Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T15:53:27.469Z Has data issue: false hasContentIssue false

6 - Kadanoff–Baym derivation of the ZNG equations

Published online by Cambridge University Press:  06 October 2009

Allan Griffin
Affiliation:
University of Toronto
Tetsuro Nikuni
Affiliation:
Tokyo University of Science
Eugene Zaremba
Affiliation:
Queen's University, Ontario
Get access

Summary

In Chapter 4, we introduced the Kadanoff–Baym equations of motion for the imaginary-time nonequilibrium Green's functions for a Bose gas, as given by (4.59) and (4.60). In this chapter, we will use the generalization of these equations of motion to find the equivalent equations of motion for the real-time Green's functions. These can be written in a natural way in the form of a kinetic equation. Using a simple Hartree–Fock approximation, we show how the coupled equations for the condensate and thermal cloud given in Chapter 3 emerge naturally from the Kadanoff–Baym (KB) formalism. This chapter is based on Imamović-Tomasović and Griffin (2001) and Imamović-Tomasović (2001), building on the pioneering work of Kane and Kadanoff (1965).

In this chapter and Chapter 7 we review the KB formalism. However, we also encourage the reader to read the original account given by Kadanoff and Baym (1962). The goals and accomplishments of their seminal book are beautifully captured by the following quote from p. 138:

Our rather elaborate Green's function arguments provide a means of describing transport phenomena in a self-contained way, starting from a dynamical approximation, i.e. an approximation for G2(U) in terms of G1(U). These calculations require no extra assumptions. The theory provides at the same time a description of the transport processes that occur and a determination of the quantities which appear in the transport equations.

A closely related way of treating the nonequilibrium dynamics of a Bose-condensed gas is based on the two-particle irreducible (2PI) effective action together with the Schwinger–Keldysh closed-time path formalism. Berges (2004) gives a detailed review of this approach, which allows one to derive the nonequilibrium action on the basis of controllable approximations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×