Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T18:11:28.226Z Has data issue: false hasContentIssue false

17 - The Landau–Khalatnikov two-fluid equations

Published online by Cambridge University Press:  06 October 2009

Allan Griffin
Affiliation:
University of Toronto
Tetsuro Nikuni
Affiliation:
Tokyo University of Science
Eugene Zaremba
Affiliation:
Queen's University, Ontario
Get access

Summary

In Chapter 15, we showed that in the limit of short collision times the coupled equations of motion for the condensate and noncondensate atoms lead to Landau's non-dissipative two-fluid hydrodynamics. However the approach used in Chapter 15 was not based on a small expansion parameter, in contrast with the more systematic Chapman–Enskog procedure used to derive hydrodynamic damping in the kinetic theory of classical gases. In the present chapter, we generalize the procedure of Chapter 15 to trapped Bose-condensed gases, in order to derive two-fluid hydrodynamic equations that include dissipation due to transport processes. We solve the kinetic equation by expanding the nonequilibrium single-particle distribution function f(p, r, t) around the distribution function f(0)(p, r, t) that describes complete local equilibrium between the condensate and the noncondensate components. All hydrodynamic damping effects are included by taking into account deviations from the local equilibrium distribution function f(0). Our discussion for a trapped Bose gas is a natural extension of the pioneering work of Kirkpatrick and Dorfman (1983, 1985a) for a uniform Bose-condensed gas. This chapter is mainly based on their work as well as on Nikuni and Griffin (2001a,b).

We will prove that, with appropriate definitions of various thermodynamic variables, our two-fluid hydrodynamic equations including damping have precisely the structure of those first derived by Landau and Khalatnikov for superfluid He. In particular, the damping associated with the collisional exchange of atoms between the condensate and noncondensate components, which is discussed at length in Chapter 15, is now expressed in terms of frequency-dependent second viscosity coefficients. This special type of damping is a characteristic signature of a dilute Bose superfluid and exists in addition to the hydrodynamic damping associated with the shear viscosity and thermal conductivity of the normal fluid.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×