Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T11:28:01.829Z Has data issue: false hasContentIssue false

13 - Recombination molecularized

Published online by Cambridge University Press:  07 August 2009

Raphael Falk
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Most geneticists believe in crossing over, that is to say breakage of two chromosomes at homologous points followed by exchange. This process has generally been thought of in mechanical terms. It is at least equally fruitful to think of it in chemical terms.

Haldane (1954, 110)

When recombination was observed in bacteria, Lederberg re-evoked the old idea of copy-choice that Belling (1928) and Freese (1957) had suggested, proposing that it could also be extended to eukaryotic chromosomes in order to overcome abnormalities such as gene conversion (see Chapter 6): If daughter chromatids were formed by conservative replication, then a copy-choice mechanism might switch synthesis from one chromatid to another, and if the synthesis of the two daughter chromatids from each parental chromosome was not quite synchronized, both might be copied over a short interval from the same parent, thereby giving rise to a 3:1 ratio at a heterozygous site. Replicas can switch from copying off one chromosome to copying off the other repeatedly in short regions of effective pairing, and the switching need not be reciprocal, resulting in both gene conversion and negative interference (Holliday, 1964; Whitehouse, 1965, 317). However, as noted earlier (Chapter 5), there were serious experimental inconsistencies with any copy-choice model of eukaryotic chromosome replication: The model predicted recombination between only the two replicated daughter chromatids, ignoring the fact that all possible pairs of the four chromatids may be involved in crossing-over events; chromosome replication occurred at the S-phase of the cell cycle, prior to meiosis and to its chromosome pairing (Swift, 1950); and this replication of the DNA was semi-conservative (Taylor, 1959).

Type
Chapter
Information
Genetic Analysis
A History of Genetic Thinking
, pp. 202 - 208
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×