Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T11:33:20.982Z Has data issue: false hasContentIssue false

27 - Complex oscillatory and chaotic media

Published online by Cambridge University Press:  10 February 2010

Rashmi C. Desai
Affiliation:
University of Toronto
Raymond Kapral
Affiliation:
University of Toronto
Get access

Summary

In the previous chapter generic features of spiral wave dynamics in oscillatory media were described on the basis of the complex Ginzburg–Landau equation. Spiral waves can also exist in complex oscillatory media where the local dynamics can have period-doubled or even chaotic oscillations. In regimes where complexoscillatory behavior is found, the new feature that appears in spiral waves is a line defect across which the phase of the oscillation changes by 2pi;. The presence of line defects leads to spatiotemporal patterns not seen in media with simple local oscillatory dynamics.

Complex periodic or chaotic oscillations do not have simple single-loop trajectories in concentration phase space. For example, a period-n limit cycle is described by a period-n orbit that loops n times in concentration phase space before closing on itself (see Fig. 27.1). In such circumstances no simple single-valued angle variable may be introduced to play the role of the phase. It is often possible to generalize the definition of phase, even for systems whose dynamics is chaotic, and this is related to the phenomenon of phase synchronization (Rosenblum et al., 1997; Pikovsky et al., 2001; Osipov et al., 2003).

A spiral wave is an example of a self-organized structure that is a result of phase synchronization in a medium with complex local dynamics. Reaction–diffusion equation studies (Goryachev and Kapral, 1996a, 1996b; Goryachev et al., 1998, 2000) and experiments (Yoneyama et al., 1995; Park and Lee, 1999, 2002; Guo et al., 2004; Park et al., 2004) have demonstrated that spiral waves with synchronization defect lines exist in spatially distributed systems that undergo period-doubling bifurcations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×