Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T10:29:40.925Z Has data issue: false hasContentIssue false

14 - Quantitative Analysis of a Schaffer Collateral Model

from Part Four - Formal Analysis

Published online by Cambridge University Press:  04 May 2010

Roland Baddeley
Affiliation:
University of Oxford
Peter Hancock
Affiliation:
University of Stirling
Peter Földiák
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Introduction

Recent advances in techniques for the formal analysis of neural networks (Amit et al., 1987; Gardner, 1988; Tsodyks and Feigelman, 1988; Treves, 1990; Nadal and Parga, 1993) have introduced the possibility of detailed quantitative analyses of real brain circuitry. This approach is particularly appropriate for regions such as the hippocampus, which show distinct structure and for which the microanatomy is relatively simple and well known.

The hippocampus, as archicortex, is thought to predate phylogenetically the more complex neocortex, and certainly possesses a simplified version of the six-layered neocortical stratification. It is not of interest merely because of its simplicity, however: evidence from numerous experimental paradigms and species points to a prominent role in the formation of long-term memory, one of the core problems of cognitive neuroscience (Scoville and Milner, 1957; McNaughton and Morris, 1987; Weiskrantz, 1987; Rolls, 1991; Gaffan, 1992; Cohen and Eichenbaum, 1993). Much useful research in neurophysiology and neuropsychology has been directed qualitatively, and even merely categorially, at understanding hippocampal function. Awareness has dawned, however, that the analysis of quantitative aspects of hippocampal organisation is essential to an understanding of why evolutionary pressures have resulted in the mammalian hippocampal system being the way it is (Stephan, 1983; Amaral et al., 1990; Witter and Groenewegen, 1992; Treves et al., 1996). Such an understanding will require a theoretical framework (or formalism) that is sufficiently powerful to yield quantitative expressions for meaningful parameters, that can be considered valid for the real hippocampus, is parsimonious with known physiology, and is simple enough to avoid being swamped by details that might obscure phenomena of real interest.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×