Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-23T08:27:11.597Z Has data issue: false hasContentIssue false

Further reading

Published online by Cambridge University Press:  05 September 2012

Janet Moore
Affiliation:
New Hall, Cambridge
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ruppert, E. E., Fox, R. S. & Barnes, R. D., Invertebrate Zoology, 7th edn (London: Brooks Cole, 2003). A comprehensive and relatively recent textbook, with sections on general principles introducing each phylum.Google Scholar
Brusca, R. C. & Brusca, G. J., Invertebrates, 2nd edn (Sunderland, MA: Sinauer, 2003).Google Scholar
Pearse, V., Pearse, J., Buchsbaum, M. & Buchsbaum, R., Living Invertebrates (Palo Alto, CA: Blackwell, 1987). The enlarged successor to Buchsbaum's Animals Without Backbones, with illustrations in colour.Google Scholar
Tudge, C., The Variety of Life: a Survey and a Celebration of All the Creatures That Have Ever Lived. (Oxford: Oxford University Press, 2000).
Alexander, R. McNeil, Animals (Cambridge: Cambridge University Press, 1990). The mechanics of animal structure in relation to locomotion.CrossRefGoogle ScholarPubMed
F. W. Harrison (ed.), Microscopic Anatomy of Invertebrates (New York, NY: Wiley-Liss, 1991–1999). Specialist books (20 volumes) on the cellular structure of all invertebrates. Not elementary reading except for useful introductory summaries of some phyla and groups.
Willmer, P., Stone, G. & Johnston, I., Environmental Physiology of Animals, 2nd edn (Oxford: Blackwell, 2005). A wide-ranging and up-to-date reference book.Google Scholar
New Scientist, weekly, is warmly recommended.
Scientific American, monthly, has authoritative and beautifully illustrated articles, rather rarely about invertebrates.
Gould, S. J., Dinosaur in a Haystack (London: Penguin, 1997), and many other collections of essays.Google Scholar
Wells, M. J., Lower Animals (London: Weidenfeld & Nicolson, 1968). Out of print and not up to date, but a pleasure if you can find it.Google Scholar
Wells, M. J., Civilization and the Limpet (Cambridge, MA: Perseus Books, 1998). Read about animals, mostly in the sea.Google Scholar
Darwin, C., The Origin of Species by Means of Natural Selection: the Preservation of Favoured Races in the Struggle for Life (London: John Murray, 1859; later editions are available).Google Scholar
Dawkins, R., The Blind Watchmaker (London: Longmans, 1986).Google Scholar
Dawkins, R., The Selfish Gene (Oxford: Oxford University Press, 1976).Google Scholar
Dawkins, R., The Ancestors' Tale: a Pilgrimage to the Dawn of Life (London: Weidenfeld & Nicolson, 2004).Google Scholar
Jones, S., The Language of the Genes (London: Flamingo, 1994).Google Scholar
Wills, C., The Wisdom of the Genes (Oxford: Oxford University Press, 1991).Google Scholar
Tudge, C., In Mendel's Footnotes (London: Jonathan Cape, 2000).Google Scholar
Ridley, M., The Red Queen (London: Viking, 1993; reprinted Penguin, 1994).Google Scholar
Panchen, A. L., Classification, Evolution and the Nature of Biology (Cambridge: Cambridge University Press, 1992).CrossRefGoogle Scholar
Jenner, R. A., Evolution of animal body plans. Evolution and Development, 2 (2000), 208–221.CrossRefGoogle ScholarPubMed
Jenner, R. A., Unleashing the force of cladistics? Metazoan phylogenetics and hypothesis testing. Integrated and Comparative Biology, 3 (2003), 207–218.CrossRefGoogle Scholar
Moore, J. & Willmer, P. G., Convergent evolution in invertebrates. Biological Reviews, 72 (1997), 1–60.CrossRefGoogle ScholarPubMed
Benton, M. J., Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead?Biological Reviews, 75 (2000), 633–648.CrossRefGoogle ScholarPubMed
Brooke, M. de L., How old are animals?Trends in Ecology and Evolution, 14 (1999), 211–212.CrossRefGoogle ScholarPubMed
Budd, G. E. & Jensen, S., A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75 (2000), 253–295.CrossRefGoogle ScholarPubMed
Fortey, R. A., Life, an Unauthorised Biography: a Natural History of the First Four Thousand Million Years on Earth (London: Flamingo, 1998).Google Scholar
Morris, S. Conway, The fossil record and the early evolution of the Metazoa. Nature, 361 (1993), 219–225.CrossRefGoogle Scholar
Morris, S. Conway, Eggs and embryos from the Cambrian. BioEssays, 20 (1998), 676–682.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Morris, S. Conway, The Crucible of Creation: the Burgess Shale and the Rise of Animals (Oxford: Oxford University Press, 1998).Google Scholar
Knoll, A. H., Breathing room for early animals. Nature, 382 (1996), 111–112.CrossRefGoogle ScholarPubMed
Vacelet, J. & Boury-Esnault, N., Carnivorous sponges. Nature, 373 (1995), 333–335.CrossRefGoogle Scholar
Leys, S. P. & Mackie, G. O., Electrical recording from a glass sponge. Nature, 387 (1997), 29–30.CrossRefGoogle Scholar
Leys, S. P. & Degnan, B. M., Cytological basis of photoresponsive behavior in a sponge larva. Biological Bulletin, 201 (2001), 323–338.CrossRefGoogle Scholar
Ender, A. & Schierwater, B., Placozoa are not derived cnidarians: evidence from molecular morphology. Molecular Biology and Evolution, 20 (2003), 130–134.CrossRefGoogle Scholar
Voigt, O., Collins, A. G., Pearse, J. S.et al., Placozoa: no longer a phylum of one. Current Biology, 14 (2004), R944–R945.CrossRefGoogle Scholar
Symposium (2005) (Nichols, S. & Worheide, G.), Sponges: new views of old animals. Integrated and Comparative Biology, 45 (2005), 333– (first few papers).Google Scholar
Frank, U., Leitz, T. & Muller, W. A., My favourite animal: the hydroid Hydractinia versatile, an informative cnidarian representative. BioEssays, 23 (2001), 963–971.CrossRefGoogle Scholar
Coates, M. M., Visual ecology and functional morphology of Cubozoa. Integrated and Comparative Biology, 43 (2003), 542–548.CrossRefGoogle ScholarPubMed
Nordstrom, K., Wallen, R., Seymour, J.et al., A simple visual system without neurons in jellyfish larvae. Proceedings of the Royal Society of London B, 270 (2003), 2349–2354.CrossRefGoogle ScholarPubMed
Nillson, D. E., Gislen, L., Coates, M. M.et al., Advanced optics in a jellyfish eye. Nature, 435 (2005), 201–205.CrossRefGoogle Scholar
Baker, A. C., Starger, C. J., McClanahan, T. R.et al., Corals' adaptive response to climate change. Nature, 430 (2004), 741.CrossRefGoogle ScholarPubMed
Pandolfi, J. M., Bradbury, R. H., Sala, E.et al., Global trajectories of the long-term decline of coral reef ecosystems. Science, 301 (2003), 955–958.CrossRefGoogle ScholarPubMed
Gardner, T. A., Cote, I. M., Gill, J. A.et al., Long-term region-wide declines in Caribbean corals. Science, 301 (2003), 958–960.CrossRefGoogle ScholarPubMed
Wild, C., Huettal, M., Klueter, A.et al., Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature, 428 (2004), 66–70.CrossRefGoogle ScholarPubMed
Symposium (2003) (Dewel, R. A.), New perspectives on the origin of metazoan complexity. Integrated and Comparative Biology, 43 (2003), 1–86. Note useful papers on hexactinellid sponges, epithelium, the Cambrian fossil record, and also the following:Google Scholar
Cartwright, P., Developmental insights into the origin of complex colonial Hydrozoa. Integrated and Comparative Biology, 43 (2003), 82–86.CrossRef
Rieger, R. M. & Ladurner, P., The significance of muscle cells for the origin of mesoderm. Integrated and Comparative Biology, 43 (2003), 47–54.CrossRef
Jacobs, D. K. & Gates, R. D., Developmental genes and the reconstruction of metazoan evolution. Integrated and Comparative Biology, 43 (2003), 11–18.CrossRef
Technau, U., Rudd, S., Maxwell, P.et al., Maintenance of ancestral complexity and non-metazoan genes in two basal Cnidaria. Trends in Genetics, 21 (2005), 633–639.CrossRef
Symposium (2002) (Garey, J. R.), The lesser known protostome taxa. Integrative and Comparative Biology, 42 (2002), 611–703. Papers on Kinorhynchs, Nematomorphs, Gastrotrichs, Loricifera, Cycliophora, Rotifers, Acanthocephala; also Nemertea (Chapter 7) and Tardigrades (Chapter 12).Google Scholar
Matthews, B. E., An Introduction to Parasitology (Cambridge: Cambridge University Press, 1998).Google Scholar
Clay, K., Parasites lost. Nature, 421 (2003), 585–586.CrossRefGoogle ScholarPubMed
Torchin, M. E., Laferty, K. D., Dobson, A. P.et al., Introduced species and their missing parasites. Nature, 421 (2003), 628–630.CrossRefGoogle ScholarPubMed
Hoek, R. M., Kesteren, R. E., Smit, A. B.et al., Altered gene expression in the host brain caused by a trematode parasite: neuropeptide genes are preferentially affected during parasitosis. Proceedings of the National Academy of Sciences, 94 (1997), 14072–14076.CrossRefGoogle ScholarPubMed
Hurst, L. D. & Randerson, J., Parasitic sex puppeteers. Scientific American, April 2002, 42–47.Google ScholarPubMed
Gibson, R., British Nemerteans (Cambridge: Cambridge University Press, 1982).Google Scholar
Little, C., The Terrestrial Invasion (Cambridge: Cambridge University Press, 1990).Google Scholar
Hodgkin, J., Horvitz, H. R., Jasny, B. R. & J. Kimble, C. elegans: sequence to biology. Science, 282 (1998), 2011. Introduction to a special issue of Science devoted to C. elegans.CrossRefGoogle Scholar
Plasterk, R. H. A., The Year of the Worm. BioEssays, 21 (1999), 105–109.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Blaxter, M., Two worms are better than one. Nature, 426 (2003), 395–396.CrossRefGoogle ScholarPubMed
Cohen, P., Review of work on RNA interference (RNAi). New Scientist, 14 September 2002, 28–33.Google Scholar
Bartolomaeus, T., Structure, function and development of segmental organs in Annelida. Hydrobiologia, 402 (1999), 21–37.CrossRefGoogle Scholar
Martin, R. & Walther, P., Effects of discharging nematocysts when an aeolid nudibranch feeds on a hydroid. Journal of the Marine Biological Association, UK, 82 (2002), 455–462.CrossRefGoogle Scholar
Greenwood, P. G., Garry, K., Hunter, A.et al., Adaptable defense: a nudibranch mucus inhibits nematocyst discharge and changes with prey type. Biological Bulletin, 206 (2004), 113–120.CrossRefGoogle ScholarPubMed
Hanlon, R. T. & Messenger, J., Cephalopod Behaviour (Oxford: Oxford University Press, 1998).Google Scholar
Budd, G. E., Why are arthropods segmented?Evolution and Development, 3 (2001), 332–342.CrossRefGoogle ScholarPubMed
Budd, G. E., Tardigrades as stem-group arthropods: the evidence from the Cambrian fauna. Zoologischer Anzeiger, 240 (2001), 265–279.CrossRefGoogle Scholar
R. A. Fortey & R. H. Thomas (eds.), Arthropod Relationships (London: Chapman & Hall, 1997).
Barclay, S., Ash, J. E. & Rowell, D. M., Environmental factors influencing the presence and abundance of a log-dwelling invertebrate, Euperipatoides rowelli. Journal of Zoology, London, 250 (2000), 425–436.CrossRefGoogle Scholar
Chen, J.-Y., Vannier, J. & Huang, D. Y., The origin of Crustacea: new evidence from the early Cambrian in China. Proceedings of the Royal Society of London B, 268 (2001), 2181–2187.CrossRefGoogle Scholar
Lavrov, D. V., Brown, W. M. & Boore, J. L., Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proceedings of the Royal Society of London B, 271 (2004), 537–544.CrossRefGoogle ScholarPubMed
Barlow, R. B., What the brain tells the eye [in the horseshoe crab]. Scientific American, April 1990, 66–71.Google ScholarPubMed
Chapman, R. F., The Insects: Structure and Function, 4th edn (Cambridge: Cambridge University Press, 1998).CrossRefGoogle Scholar
Maddrell, S. H. P., Why are there no insects in the open sea?Journal of Experimental Biology, 201 (1998), 2461–2464.Google ScholarPubMed
McLeod, M. & Braddy, S., Invasion Earth. New Scientist, 8 June 2002, 38–41.Google Scholar
Ellington, C. P., Berg, C., Willmott, A.et al., Leading-edge vortices in insect flight. Nature, 384 (1996), 626–630.CrossRefGoogle Scholar
Wootton, R., How flies fly. Nature, 400 (1999), 112–113.CrossRefGoogle ScholarPubMed
Bartolomaeus, T., Ultrastructure and formation of the body cavity lining in Phoronis muelleri. Zoomorphology, 120 (2001), 135–148.CrossRefGoogle Scholar
Peck, L. & Barnes, D. K. A., Metabolic flexibility: the key to long-term evolutionary success in Bryozoa?Proceedings of the Royal Society of London B, 271 (2004) (Suppl.), S18–S21.CrossRefGoogle ScholarPubMed
Wilkie, I. C., Mutable collagenous tissues: extracellular matrix as mechano-effector. Echinoderm Studies, 5 (1996), 61–102.Google Scholar
Aizenburg, J., Tkachenko, A., Weiner, S.et al., Calcitic microlenses as part of the photoreceptor system in brittle stars. Nature, 412 (2001), 819–822.CrossRefGoogle Scholar
Eaves, A. A. & Palmer, A. R., Widespread cloning in echinoderm larvae. Nature, 425 (2003), 146.CrossRefGoogle ScholarPubMed
Vickery, M. S. & McClintock, J. B., Regeneration in metazoan larvae. Nature, 394 (1998), 140.CrossRefGoogle Scholar
Lacalli, T. C., Vetulicolians: are they deuterostomes? Chordates?BioEssays, 24 (2002), 208–211.CrossRefGoogle ScholarPubMed
Shu, D. G., Morris, S. Conway, Chen, H.et al., Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414 (2001), 419–424.CrossRefGoogle Scholar
Dilly, P. N., Cephalodiscus graptolitoides sp.nov.: a probable extant graptolite. Journal of Zoology, London, 229 (1993), 69–78.CrossRefGoogle Scholar
Rigby, S., Graptolites come to life. Nature, 362 (1993), 209–210.CrossRefGoogle Scholar
Lowe, C. J., Wu, M., Salic, A.et al., Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell, 113 (2003), 853–865.CrossRefGoogle ScholarPubMed
Tautz, D., Chordate evolution in a new light [comment on paper by Lowe et al.] Cell, 113 (2003), 812–813.CrossRefGoogle Scholar
Ruppert, E. E., Evolutionary origin of the vertebrate nephron. American Zoologist, 34 (1994), 542–553.CrossRefGoogle Scholar
Mayer, G. & Bartolomaeus, T., Ultrastructure of stomocord and heart glomerulus complex in Rhabdopleura compacta (Pterobranchiata) and phylogenetic implications. Zoomorphology, 122 (2003), 125–133.CrossRefGoogle Scholar
Henry, J. Q., Tagawa, K. & Martindale, M. Q., Deuterostome evolution: early development in the enteropneust hemichordate Ptychodera flava. Evolution and Development, 3 (2001), 375–390.CrossRefGoogle ScholarPubMed
Nakajima, Y., Humphreys, T. & Kaneko, H.et al., Development and neural organisation of the tornaria larva of the Hawaiian hemichordate Ptychodera flava. Zoological Science, 21 (2004), 69–78.CrossRefGoogle ScholarPubMed
Dover, C. L., The Ecology of Deep-sea Hydrothermal Vents (Princeton, NJ: Princeton University Press, 2000).Google Scholar
Little, C. T. S. & Vrijenhoek, R. C., Are hydrothermic vent animals living fossils?Trends in Ecology and Evolution, 18 (2003), 582–588.CrossRefGoogle Scholar
Byatt, A., Fothergill, A. & Holmes, M., The Blue Planet: a Natural History of the Oceans (London: BBC, 2001). (Based on David Attenborough's television series).Google Scholar
Wolpert, L., Beddington, R. S. P., Brockes, J. P.et al., Principles of Development, 2nd edn (London: Current Biology, 2002).Google Scholar
Lawrence, P. A., The Making of a Fly: the Genetics of Animal Design (Oxford: Blackwell, 1992).Google Scholar
Minelli, A., The Development of Animal Form: Ontogeny, Morphology and Evolution (Cambridge: Cambridge University Press, 2003).CrossRefGoogle Scholar
Lambert, J. D. & Nagy, L. M., Asymmetrical inheritance of centrosomally localised mRNAs during embryonic cleavages. Nature, 420 (2002), 682–686.CrossRefGoogle Scholar
Lemaire, P. & Marcellini, S., Early animal embryogenesis. Biologist, 50 (2003), 137–140.Google Scholar
Wray, G. A., Punctuated evolution of embryos. Science, 267 (1995), 1115–1116.CrossRefGoogle ScholarPubMed
Martindale, M. Q. & Henry, J. Q., Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Developmental Biology, 214 (1999), 243–257.CrossRefGoogle Scholar
Lee, J.-Y. & Goldstein, B., Mechanisms of cell positioning during C. elegans gastrulation. Development, 130 (2003), 307–320.CrossRefGoogle ScholarPubMed
Goldstein, B. & Freeman, G., Axis specification in animal development. BioEssays, 19 (1997), 105–116.CrossRefGoogle ScholarPubMed
Angerer, L. M. & Angerer, R. C., Animal–vegetal axis patterning mechanisms in the early sea urchin embryo. Developmental Biology, 218 (2000), 1–12.CrossRefGoogle ScholarPubMed
Bayascas, J. R., Castillo, E., Muñoz-Mármol, A. M.et al., Planarian Hox genes: novel patterns of expression during regeneration. Development, 124 (1997), 141–148.Google ScholarPubMed
Raff, R. A., Evo-devo: the evolution of a new discipline. Nature Reviews Genetics, 1 (2000), 74–79.CrossRefGoogle ScholarPubMed
Wagner, G. P., What is the promise of developmental evolution?Journal of Experimental Zoology, 288 (2000), 95–98.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wolpert, L. & Szathma'ry, E., Evolution and the egg. Nature, 420 (2002), 745.CrossRefGoogle Scholar
Scott, I. C. & Stainier, D. Y. R., Twisting the body into shape. Nature, 425 (2003), 461–463.CrossRefGoogle ScholarPubMed
Carroll, S. B., Endless Forms Most Beautiful: the New Science of Evo Devo and the Making of the Animal Kingdom (New York, NY: Norton, 2005).Google Scholar
Raff, R. A., The Shape of Life: Genes, Development and the Evolution of the Animal Form (Chicago, IL: University of Chicago Press, 1996).Google Scholar
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D., From DNA to Diversity, 2nd edn (Oxford: Blackwell, 2001).Google Scholar
Valentine, J. W., On the Origin of Phyla (Chicago, IL: University of Chicago Press, 2004).Google Scholar
Levine, M. & Tjian, R., Transcription regulation and animal diversity. Nature, 424 (2003), 147–151.CrossRefGoogle ScholarPubMed
Rosenburg, S. M. & Hastings, P. J., Worming into genetic instability. Nature, 430 (2004), 625–626.CrossRefGoogle Scholar
Curole, J. P. & Kocher, T. D., Mitogenomics: digging deeper with complete mitochondrial genomes. Trends in Ecology and Evolution, 14 (1999), 394–398.CrossRefGoogle ScholarPubMed
Baldauf, S. L., The deep roots of eukaryotes. Science, 300 (2003), 1703–1706.CrossRefGoogle ScholarPubMed
Martin, W. & Embley, T. M., Early evolution comes full circle. Nature, 431 (2004), 134–137.CrossRefGoogle ScholarPubMed
Simpson, A. G. B. & Roger, A. J., Eukaryotic evolution: getting to the root of the problem. Current Biology, 12 (2002), R691–R693.CrossRefGoogle Scholar
Wainright, P. O., Hinkle, G., Sogin, M. L.et al., Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science, 260 (1993), 340–342.CrossRefGoogle ScholarPubMed
King, N. & Carroll, S. B., A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proceedings of the National Academy of Sciences, 98 (2001), 15032–15037.CrossRefGoogle ScholarPubMed
King, N., Hittenger, C. T. & Carroll, S. B., Evolution of key cell signaling and adhesion protein families predates animal origins. Science, 301 (2003), 361–363.CrossRefGoogle ScholarPubMed
Bode, H., Matinez, D., Shenk, M. A.et al., Evolution of head development. Biological Bulletin, 196 (1999), 408–410.CrossRefGoogle ScholarPubMed
Bode, H. R., The role of Hox genes in axial patterning in Hydra. American Zoologist, 41 (2001), 621–628.Google Scholar
Finnerty, J. R., Master, V. A., Irvine, S.et al., Homeobox genes in the Ctenophora: identification of ‘paired’ type and Hox homologues in the atentaculate ctenophore Beroe ovata. Molecular Marine Biology and Biotechnology, 5 (1996), 249–258.Google ScholarPubMed
Henry, J. Q. & Martindale, M. Q., Inductive interactions and embryonic equivalence groups in a basal metazoan, the ctenophore Mnemiopsis leidyi. Evolution and Development, 6 (2004), 17–24.CrossRefGoogle Scholar
Boyer, B. C., Regulative development in a spiralian embryo as shown by deletion experiments on the Acoel, Childia. Journal of Experimental Zoology, 176 (1971), 97–106.CrossRefGoogle Scholar
Henry, J. Q. & Boyer, B. C., The unique developmental program of the acoel flatworm Neochildia fusca. Developmental Biology, 220 (2000), 285–293.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J.et al., Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283 (1999), 1919–1923.CrossRefGoogle Scholar
Telford, M. J., Lockwood, A. E., Cartwright-Finch, C.et al., Combined large and small subunit RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London B, 270 (2003), 1077–1083.CrossRefGoogle ScholarPubMed
Baguña, J. & Riutort, M., The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays, 26 (2004), 1046–1057.CrossRefGoogle ScholarPubMed
Cook, C. E., Jiménez, E., Akam, M.et al., The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution and Development, 6 (2004), 154–163.CrossRefGoogle ScholarPubMed
Erwin, D. H. & Davidson, E. H., The last common bilaterian ancestor. Development, 129 (2002), 3021–3032.Google ScholarPubMed
Carranza, S., Baguña, J. & Riutort, M., Are the platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology and Evolution, 14 (1997), 485–497.CrossRefGoogle ScholarPubMed
Saló, E., Tauler, J., Jiménez, E.et al., Hox and paraHox genes in flatworms: characterisation and expression. American Zoologist, 41 (2001), 652–663.Google Scholar
Maslakova, S. A. & Norenburg, J. L., Trochophore larva is plesiomorphic for nemerteans: evidence for prototroch in a basal nemertean, Carinoma tremaphorus (Paleonemertea). American Zoologist, 41 (2001), 1515–1516.Google Scholar
Thollesson, M. & Norenburg, J. L., Ribbon worm relationships: a phylogeny of the phylum ‘Nemertea’. Proceedings of the Royal Society of London B, 270 (2002), 407–415.CrossRefGoogle Scholar
Turbeville, J. M., Progress in nemertean biology: development and phylogeny. Integrated and Comparative Biology, 42 (2002), 692–703.CrossRefGoogle ScholarPubMed
Shankland, M. & Seaver, E. C., Evolution of the bilaterian body plan: what have we learnt from annelids?Proceedings of the National Academy of Sciences, 97 (2000), 4434–4437.CrossRefGoogle Scholar
Robertis, E. M., The ancestry of segmentation. Nature, 387 (1997), 25.CrossRefGoogle ScholarPubMed
Lee, P. N., Callaerts, P., Couet, H. G.et al., Cephalopod Hox genes and the origin of morphological novelties. Nature, 424 (2003), 1061–1065.CrossRefGoogle ScholarPubMed
Rosa, R., Grenier, J. K., Andreeva, T.et al., Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399 (1999), 772–776.CrossRefGoogle ScholarPubMed
Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M. A.et al., Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267 (1995), 1641–1643.CrossRefGoogle ScholarPubMed
Cohen, B. L., Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proceedings of the Royal Society of London B, 267 (2000), 225–331.CrossRefGoogle Scholar
Kobayashi, M., Furuya, H. & Holland, P. W. H., Dicyemids are higher animals. Nature, 401 (1999), 762.Google ScholarPubMed
Anderson, C. L., Canning, E. U. & Okamura, B., A triploblast origin for Myxozoa?Nature, 392 (1998), 346.CrossRefGoogle ScholarPubMed
Monteiro, A. S., Okamura, B. & Holland, P. W. H., Orphan worm finds a home: Buddenbrockia is a myxozoan. Molecular Biology and Evolution, 19 (2002), 968–971.CrossRefGoogle ScholarPubMed
Papillon, D., Perez, Y., Caubit, X.et al., Hox gene survey in the chaetognath Spadella cephalaptera: evolutionary implications. Development, Genes and Evolution, 213 (2003), 142–148.Google ScholarPubMed
Telford, M. J., Affinity for arrow worms. Nature, 431 (2004), 254–256.CrossRefGoogle ScholarPubMed
Shear, W. A., End of the ‘Uniramia’ taxon. Nature, 359 (1992), 477–478.CrossRefGoogle Scholar
Averof, M. & Cohen, S. M., Evolutionary origin of insect wings from ancestral gills. Nature, 385 (1997), 627–630.CrossRefGoogle ScholarPubMed
Ogg, S., Paradis, S., Gottlieb, S.et al., The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in Caenorhabditis elegans. Nature, 389 (1997), 994–999.CrossRefGoogle Scholar
Ramskold, L. & Hou, X., New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351 (1991), 225–228.CrossRefGoogle Scholar
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S.et al., Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387 (1997), 489–493.CrossRefGoogle ScholarPubMed
Adoutte, A., Balavoine, G., Lartillot, N.et al., The new animal phylogeny: reliability and implications. Proceedings of the National Academy of Sciences, 93 (2000), 4453–4456.CrossRefGoogle Scholar
Graham, A., Animal phylogeny: root and branch surgery. Current Biology, 10 (2000), R36–R38.CrossRefGoogle ScholarPubMed
Arthur, W., The emerging conceptual framework of evolutionary developmental biology. Nature, 415 (2002), 757–764.CrossRefGoogle ScholarPubMed
Lowe, C. J. & Wray, G. A., Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature, 389 (1997), 718–721.CrossRefGoogle ScholarPubMed
Wray, G. A. & Lowe, C. J., Developmental regulatory genes and echinoderm evolution. Systematic Biology, 49 (2000), 28–51.CrossRefGoogle ScholarPubMed
Bromham, L. D. & Degnan, B. M., Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate and echinoderm clade. Evolution and Development, 1 (1999), 166–171.CrossRefGoogle ScholarPubMed
Cameron, C. B., Particle retention and flow in the pharynx of the hemichordate worm Harrimania planktophilus: the filter feeding pharynx may have evolved before the chordates. Biological Bulletin, 202 (2002), 182–200.CrossRefGoogle ScholarPubMed
Tagawa, K., Satoh, N. & Humphreys, T., Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates. Evolution and Development, 3 (2001), 443–454.CrossRefGoogle ScholarPubMed
Dehal, P., Satou, Y., Campbell, R. K.et al., The draft genome of Ciona intestinalis: insights into chordate–vertebrate origins. Science, 298 (2002), 2157–2167.CrossRefGoogle Scholar
Gee, H., Return of a little squirt. Nature, 420 (2002), 755–756.CrossRefGoogle ScholarPubMed
Patel, N. H., Time, space and genomes. Nature, 431 (2004), 28–29.CrossRefGoogle ScholarPubMed
Seo, H.-C., Edvardsen, R. B., Maeland, A. D.et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature, 431 (2004), 67–71.CrossRefGoogle ScholarPubMed
Robertis, E. M. & Sasai, Y., A common plan for dorsoventral patterning in Bilateria. Nature, 380 (1996), 37–40.CrossRefGoogle ScholarPubMed
Bourlat, S., Nielsen, C., Lockyer, A. E.et al., Xenoturbella is a deuterostome that eats molluscs. Nature, 424 (2003), 925–928.CrossRefGoogle ScholarPubMed
Delsuc, F., Brinkmann, H., Chourrot, D. & Philippe, H., Tunicates and not cephalochordates are the closet living relatives of vertebrates. Nature, 439 (2006), 965–968.CrossRefGoogle ScholarPubMed
Carroll, S. B., Homeotic genes and the evolution of arthropods and chordates. Nature, 376 (1995), 479–485.CrossRefGoogle ScholarPubMed
Averof, M. & Akam, M., Hox genes and the diversification of insect and crustacean body plans. Nature, 376 (1995), 420–423.CrossRefGoogle ScholarPubMed
Averof, M., Origin of the spider's head. Nature, 395 (1998), 436–437.CrossRefGoogle ScholarPubMed
Boore, J. L., Lavrov, D. V. & Brown, W. M., Gene translocation links insects and crustaceans. Nature, 392 (1998), 667–668.CrossRefGoogle ScholarPubMed
Akam, M., Hox genes: from master genes to micromanagers. Current Biology, 8 (1998), R676–R678.CrossRefGoogle ScholarPubMed
Akam, M., Arthropods: developmental diversity within a (super) phylum. Proceedings of the National Academy of Sciences, 97 (2000), 4438–4441.CrossRefGoogle ScholarPubMed
Levine, M., How insects lose their limbs. Nature, 415 (2002), 848–849.CrossRefGoogle ScholarPubMed
Galant, T. R. & Carroll, S. B., Evolution of a transcriptional repression domain in an insect Hox protein. Nature, 415 (2002), 910–913.CrossRefGoogle Scholar
Cook, C. E., Smith, M. L., Telford, M. J.et al., Hox genes and the phylogeny of arthropods. Current Biology, 11 (2001), 759–763.CrossRefGoogle ScholarPubMed
Nardi, F., Spinsanti, G., J. L. Boore et al., Hexapod origins: monophyletic or paraphyletic?Science, 299 (2003), 1887–1889.CrossRefGoogle ScholarPubMed
Tautz, D., Debatable homologies. Nature, 395 (1998), 17–19.CrossRefGoogle ScholarPubMed
Bolker, J. A. & Raff, R. A., Developmental genetics and traditional homology. BioEssays, 18 (1996), 489–494.CrossRefGoogle ScholarPubMed
Hall, B. K. (ed.), Homology: the Hierarchical Basis of Comparative Biology (San Diego: Academic Press, 1994).Google Scholar
Hall, B. K., Descent with modification: the unity underlying homology as seen through an analysis of development and evolution. Biological Reviews, 78 (2003), 409–433.CrossRefGoogle ScholarPubMed
McGhee, J. D., Homologous tails? Or tales of homology?BioEssays, 22 (2000), 781–785.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Quiring, R., Waldorf, U., Kloter, U.et al., Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science, 265 (1994), 785–789.CrossRefGoogle ScholarPubMed
Gehring, W. J. & Ikeo, K., Pax 6: mastering eye morphogenesis and eye evolution. Trends in Genetics, 15 (1999), 371–381.CrossRefGoogle ScholarPubMed
Tomarev, S. I., Callaerts, P., Koss, L.et al., Squid Pax-6 and eye development. Proceedings of the National Academy of Sciences, 94 (1997), 2421–2426.CrossRefGoogle ScholarPubMed
Ruppert, E. E., Fox, R. S. & Barnes, R. D., Invertebrate Zoology, 7th edn (London: Brooks Cole, 2003). A comprehensive and relatively recent textbook, with sections on general principles introducing each phylum.Google Scholar
Brusca, R. C. & Brusca, G. J., Invertebrates, 2nd edn (Sunderland, MA: Sinauer, 2003).Google Scholar
Pearse, V., Pearse, J., Buchsbaum, M. & Buchsbaum, R., Living Invertebrates (Palo Alto, CA: Blackwell, 1987). The enlarged successor to Buchsbaum's Animals Without Backbones, with illustrations in colour.Google Scholar
Tudge, C., The Variety of Life: a Survey and a Celebration of All the Creatures That Have Ever Lived. (Oxford: Oxford University Press, 2000).
Alexander, R. McNeil, Animals (Cambridge: Cambridge University Press, 1990). The mechanics of animal structure in relation to locomotion.CrossRefGoogle ScholarPubMed
F. W. Harrison (ed.), Microscopic Anatomy of Invertebrates (New York, NY: Wiley-Liss, 1991–1999). Specialist books (20 volumes) on the cellular structure of all invertebrates. Not elementary reading except for useful introductory summaries of some phyla and groups.
Willmer, P., Stone, G. & Johnston, I., Environmental Physiology of Animals, 2nd edn (Oxford: Blackwell, 2005). A wide-ranging and up-to-date reference book.Google Scholar
New Scientist, weekly, is warmly recommended.
Scientific American, monthly, has authoritative and beautifully illustrated articles, rather rarely about invertebrates.
Gould, S. J., Dinosaur in a Haystack (London: Penguin, 1997), and many other collections of essays.Google Scholar
Wells, M. J., Lower Animals (London: Weidenfeld & Nicolson, 1968). Out of print and not up to date, but a pleasure if you can find it.Google Scholar
Wells, M. J., Civilization and the Limpet (Cambridge, MA: Perseus Books, 1998). Read about animals, mostly in the sea.Google Scholar
Darwin, C., The Origin of Species by Means of Natural Selection: the Preservation of Favoured Races in the Struggle for Life (London: John Murray, 1859; later editions are available).Google Scholar
Dawkins, R., The Blind Watchmaker (London: Longmans, 1986).Google Scholar
Dawkins, R., The Selfish Gene (Oxford: Oxford University Press, 1976).Google Scholar
Dawkins, R., The Ancestors' Tale: a Pilgrimage to the Dawn of Life (London: Weidenfeld & Nicolson, 2004).Google Scholar
Jones, S., The Language of the Genes (London: Flamingo, 1994).Google Scholar
Wills, C., The Wisdom of the Genes (Oxford: Oxford University Press, 1991).Google Scholar
Tudge, C., In Mendel's Footnotes (London: Jonathan Cape, 2000).Google Scholar
Ridley, M., The Red Queen (London: Viking, 1993; reprinted Penguin, 1994).Google Scholar
Panchen, A. L., Classification, Evolution and the Nature of Biology (Cambridge: Cambridge University Press, 1992).CrossRefGoogle Scholar
Jenner, R. A., Evolution of animal body plans. Evolution and Development, 2 (2000), 208–221.CrossRefGoogle ScholarPubMed
Jenner, R. A., Unleashing the force of cladistics? Metazoan phylogenetics and hypothesis testing. Integrated and Comparative Biology, 3 (2003), 207–218.CrossRefGoogle Scholar
Moore, J. & Willmer, P. G., Convergent evolution in invertebrates. Biological Reviews, 72 (1997), 1–60.CrossRefGoogle ScholarPubMed
Benton, M. J., Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead?Biological Reviews, 75 (2000), 633–648.CrossRefGoogle ScholarPubMed
Brooke, M. de L., How old are animals?Trends in Ecology and Evolution, 14 (1999), 211–212.CrossRefGoogle ScholarPubMed
Budd, G. E. & Jensen, S., A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75 (2000), 253–295.CrossRefGoogle ScholarPubMed
Fortey, R. A., Life, an Unauthorised Biography: a Natural History of the First Four Thousand Million Years on Earth (London: Flamingo, 1998).Google Scholar
Morris, S. Conway, The fossil record and the early evolution of the Metazoa. Nature, 361 (1993), 219–225.CrossRefGoogle Scholar
Morris, S. Conway, Eggs and embryos from the Cambrian. BioEssays, 20 (1998), 676–682.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Morris, S. Conway, The Crucible of Creation: the Burgess Shale and the Rise of Animals (Oxford: Oxford University Press, 1998).Google Scholar
Knoll, A. H., Breathing room for early animals. Nature, 382 (1996), 111–112.CrossRefGoogle ScholarPubMed
Benton, M. J., Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead?Biological Reviews, 75 (2000), 633–648.CrossRefGoogle ScholarPubMed
Brooke, M. de L., How old are animals?Trends in Ecology and Evolution, 14 (1999), 211–212.CrossRefGoogle ScholarPubMed
Budd, G. E. & Jensen, S., A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75 (2000), 253–295.CrossRefGoogle ScholarPubMed
Fortey, R. A., Life, an Unauthorised Biography: a Natural History of the First Four Thousand Million Years on Earth (London: Flamingo, 1998).Google Scholar
Morris, S. Conway, The fossil record and the early evolution of the Metazoa. Nature, 361 (1993), 219–225.CrossRefGoogle Scholar
Morris, S. Conway, Eggs and embryos from the Cambrian. BioEssays, 20 (1998), 676–682.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Morris, S. Conway, The Crucible of Creation: the Burgess Shale and the Rise of Animals (Oxford: Oxford University Press, 1998).Google Scholar
Knoll, A. H., Breathing room for early animals. Nature, 382 (1996), 111–112.CrossRefGoogle ScholarPubMed
Vacelet, J. & Boury-Esnault, N., Carnivorous sponges. Nature, 373 (1995), 333–335.CrossRefGoogle Scholar
Leys, S. P. & Mackie, G. O., Electrical recording from a glass sponge. Nature, 387 (1997), 29–30.CrossRefGoogle Scholar
Leys, S. P. & Degnan, B. M., Cytological basis of photoresponsive behavior in a sponge larva. Biological Bulletin, 201 (2001), 323–338.CrossRefGoogle Scholar
Ender, A. & Schierwater, B., Placozoa are not derived cnidarians: evidence from molecular morphology. Molecular Biology and Evolution, 20 (2003), 130–134.CrossRefGoogle Scholar
Voigt, O., Collins, A. G., Pearse, J. S.et al., Placozoa: no longer a phylum of one. Current Biology, 14 (2004), R944–R945.CrossRefGoogle Scholar
Symposium (2005) (Nichols, S. & Worheide, G.), Sponges: new views of old animals. Integrated and Comparative Biology, 45 (2005), 333– (first few papers).Google Scholar
Frank, U., Leitz, T. & Muller, W. A., My favourite animal: the hydroid Hydractinia versatile, an informative cnidarian representative. BioEssays, 23 (2001), 963–971.CrossRefGoogle Scholar
Coates, M. M., Visual ecology and functional morphology of Cubozoa. Integrated and Comparative Biology, 43 (2003), 542–548.CrossRefGoogle ScholarPubMed
Nordstrom, K., Wallen, R., Seymour, J.et al., A simple visual system without neurons in jellyfish larvae. Proceedings of the Royal Society of London B, 270 (2003), 2349–2354.CrossRefGoogle ScholarPubMed
Nillson, D. E., Gislen, L., Coates, M. M.et al., Advanced optics in a jellyfish eye. Nature, 435 (2005), 201–205.CrossRefGoogle Scholar
Baker, A. C., Starger, C. J., McClanahan, T. R.et al., Corals' adaptive response to climate change. Nature, 430 (2004), 741.CrossRefGoogle ScholarPubMed
Pandolfi, J. M., Bradbury, R. H., Sala, E.et al., Global trajectories of the long-term decline of coral reef ecosystems. Science, 301 (2003), 955–958.CrossRefGoogle ScholarPubMed
Gardner, T. A., Cote, I. M., Gill, J. A.et al., Long-term region-wide declines in Caribbean corals. Science, 301 (2003), 958–960.CrossRefGoogle ScholarPubMed
Wild, C., Huettal, M., Klueter, A.et al., Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature, 428 (2004), 66–70.CrossRefGoogle ScholarPubMed
Symposium (2003) (Dewel, R. A.), New perspectives on the origin of metazoan complexity. Integrated and Comparative Biology, 43 (2003), 1–86. Note useful papers on hexactinellid sponges, epithelium, the Cambrian fossil record, and also the following:Google Scholar
Cartwright, P., Developmental insights into the origin of complex colonial Hydrozoa. Integrated and Comparative Biology, 43 (2003), 82–86.CrossRef
Rieger, R. M. & Ladurner, P., The significance of muscle cells for the origin of mesoderm. Integrated and Comparative Biology, 43 (2003), 47–54.CrossRef
Jacobs, D. K. & Gates, R. D., Developmental genes and the reconstruction of metazoan evolution. Integrated and Comparative Biology, 43 (2003), 11–18.CrossRef
Technau, U., Rudd, S., Maxwell, P.et al., Maintenance of ancestral complexity and non-metazoan genes in two basal Cnidaria. Trends in Genetics, 21 (2005), 633–639.CrossRef
Symposium (2002) (Garey, J. R.), The lesser known protostome taxa. Integrative and Comparative Biology, 42 (2002), 611–703. Papers on Kinorhynchs, Nematomorphs, Gastrotrichs, Loricifera, Cycliophora, Rotifers, Acanthocephala; also Nemertea (Chapter 7) and Tardigrades (Chapter 12).Google Scholar
Matthews, B. E., An Introduction to Parasitology (Cambridge: Cambridge University Press, 1998).Google Scholar
Clay, K., Parasites lost. Nature, 421 (2003), 585–586.CrossRefGoogle ScholarPubMed
Torchin, M. E., Laferty, K. D., Dobson, A. P.et al., Introduced species and their missing parasites. Nature, 421 (2003), 628–630.CrossRefGoogle ScholarPubMed
Hoek, R. M., Kesteren, R. E., Smit, A. B.et al., Altered gene expression in the host brain caused by a trematode parasite: neuropeptide genes are preferentially affected during parasitosis. Proceedings of the National Academy of Sciences, 94 (1997), 14072–14076.CrossRefGoogle ScholarPubMed
Hurst, L. D. & Randerson, J., Parasitic sex puppeteers. Scientific American, April 2002, 42–47.Google ScholarPubMed
Gibson, R., British Nemerteans (Cambridge: Cambridge University Press, 1982).Google Scholar
Little, C., The Terrestrial Invasion (Cambridge: Cambridge University Press, 1990).Google Scholar
Hodgkin, J., Horvitz, H. R., Jasny, B. R. & J. Kimble, C. elegans: sequence to biology. Science, 282 (1998), 2011. Introduction to a special issue of Science devoted to C. elegans.CrossRefGoogle Scholar
Plasterk, R. H. A., The Year of the Worm. BioEssays, 21 (1999), 105–109.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Blaxter, M., Two worms are better than one. Nature, 426 (2003), 395–396.CrossRefGoogle ScholarPubMed
Cohen, P., Review of work on RNA interference (RNAi). New Scientist, 14 September 2002, 28–33.Google Scholar
Bartolomaeus, T., Structure, function and development of segmental organs in Annelida. Hydrobiologia, 402 (1999), 21–37.CrossRefGoogle Scholar
Martin, R. & Walther, P., Effects of discharging nematocysts when an aeolid nudibranch feeds on a hydroid. Journal of the Marine Biological Association, UK, 82 (2002), 455–462.CrossRefGoogle Scholar
Greenwood, P. G., Garry, K., Hunter, A.et al., Adaptable defense: a nudibranch mucus inhibits nematocyst discharge and changes with prey type. Biological Bulletin, 206 (2004), 113–120.CrossRefGoogle ScholarPubMed
Hanlon, R. T. & Messenger, J., Cephalopod Behaviour (Oxford: Oxford University Press, 1998).Google Scholar
Budd, G. E., Why are arthropods segmented?Evolution and Development, 3 (2001), 332–342.CrossRefGoogle ScholarPubMed
Budd, G. E., Tardigrades as stem-group arthropods: the evidence from the Cambrian fauna. Zoologischer Anzeiger, 240 (2001), 265–279.CrossRefGoogle Scholar
R. A. Fortey & R. H. Thomas (eds.), Arthropod Relationships (London: Chapman & Hall, 1997).
Barclay, S., Ash, J. E. & Rowell, D. M., Environmental factors influencing the presence and abundance of a log-dwelling invertebrate, Euperipatoides rowelli. Journal of Zoology, London, 250 (2000), 425–436.CrossRefGoogle Scholar
Chen, J.-Y., Vannier, J. & Huang, D. Y., The origin of Crustacea: new evidence from the early Cambrian in China. Proceedings of the Royal Society of London B, 268 (2001), 2181–2187.CrossRefGoogle Scholar
Lavrov, D. V., Brown, W. M. & Boore, J. L., Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proceedings of the Royal Society of London B, 271 (2004), 537–544.CrossRefGoogle ScholarPubMed
Barlow, R. B., What the brain tells the eye [in the horseshoe crab]. Scientific American, April 1990, 66–71.Google ScholarPubMed
Chapman, R. F., The Insects: Structure and Function, 4th edn (Cambridge: Cambridge University Press, 1998).CrossRefGoogle Scholar
Maddrell, S. H. P., Why are there no insects in the open sea?Journal of Experimental Biology, 201 (1998), 2461–2464.Google ScholarPubMed
McLeod, M. & Braddy, S., Invasion Earth. New Scientist, 8 June 2002, 38–41.Google Scholar
Ellington, C. P., Berg, C., Willmott, A.et al., Leading-edge vortices in insect flight. Nature, 384 (1996), 626–630.CrossRefGoogle Scholar
Wootton, R., How flies fly. Nature, 400 (1999), 112–113.CrossRefGoogle ScholarPubMed
Bartolomaeus, T., Ultrastructure and formation of the body cavity lining in Phoronis muelleri. Zoomorphology, 120 (2001), 135–148.CrossRefGoogle Scholar
Peck, L. & Barnes, D. K. A., Metabolic flexibility: the key to long-term evolutionary success in Bryozoa?Proceedings of the Royal Society of London B, 271 (2004) (Suppl.), S18–S21.CrossRefGoogle ScholarPubMed
Wilkie, I. C., Mutable collagenous tissues: extracellular matrix as mechano-effector. Echinoderm Studies, 5 (1996), 61–102.Google Scholar
Aizenburg, J., Tkachenko, A., Weiner, S.et al., Calcitic microlenses as part of the photoreceptor system in brittle stars. Nature, 412 (2001), 819–822.CrossRefGoogle Scholar
Eaves, A. A. & Palmer, A. R., Widespread cloning in echinoderm larvae. Nature, 425 (2003), 146.CrossRefGoogle ScholarPubMed
Vickery, M. S. & McClintock, J. B., Regeneration in metazoan larvae. Nature, 394 (1998), 140.CrossRefGoogle Scholar
Lacalli, T. C., Vetulicolians: are they deuterostomes? Chordates?BioEssays, 24 (2002), 208–211.CrossRefGoogle ScholarPubMed
Shu, D. G., Morris, S. Conway, Chen, H.et al., Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414 (2001), 419–424.CrossRefGoogle Scholar
Dilly, P. N., Cephalodiscus graptolitoides sp.nov.: a probable extant graptolite. Journal of Zoology, London, 229 (1993), 69–78.CrossRefGoogle Scholar
Rigby, S., Graptolites come to life. Nature, 362 (1993), 209–210.CrossRefGoogle Scholar
Lowe, C. J., Wu, M., Salic, A.et al., Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell, 113 (2003), 853–865.CrossRefGoogle ScholarPubMed
Tautz, D., Chordate evolution in a new light [comment on paper by Lowe et al.] Cell, 113 (2003), 812–813.CrossRefGoogle Scholar
Ruppert, E. E., Evolutionary origin of the vertebrate nephron. American Zoologist, 34 (1994), 542–553.CrossRefGoogle Scholar
Mayer, G. & Bartolomaeus, T., Ultrastructure of stomocord and heart glomerulus complex in Rhabdopleura compacta (Pterobranchiata) and phylogenetic implications. Zoomorphology, 122 (2003), 125–133.CrossRefGoogle Scholar
Henry, J. Q., Tagawa, K. & Martindale, M. Q., Deuterostome evolution: early development in the enteropneust hemichordate Ptychodera flava. Evolution and Development, 3 (2001), 375–390.CrossRefGoogle ScholarPubMed
Nakajima, Y., Humphreys, T. & Kaneko, H.et al., Development and neural organisation of the tornaria larva of the Hawaiian hemichordate Ptychodera flava. Zoological Science, 21 (2004), 69–78.CrossRefGoogle ScholarPubMed
Dover, C. L., The Ecology of Deep-sea Hydrothermal Vents (Princeton, NJ: Princeton University Press, 2000).Google Scholar
Little, C. T. S. & Vrijenhoek, R. C., Are hydrothermic vent animals living fossils?Trends in Ecology and Evolution, 18 (2003), 582–588.CrossRefGoogle Scholar
Byatt, A., Fothergill, A. & Holmes, M., The Blue Planet: a Natural History of the Oceans (London: BBC, 2001). (Based on David Attenborough's television series).Google Scholar
Vacelet, J. & Boury-Esnault, N., Carnivorous sponges. Nature, 373 (1995), 333–335.CrossRefGoogle Scholar
Leys, S. P. & Mackie, G. O., Electrical recording from a glass sponge. Nature, 387 (1997), 29–30.CrossRefGoogle Scholar
Leys, S. P. & Degnan, B. M., Cytological basis of photoresponsive behavior in a sponge larva. Biological Bulletin, 201 (2001), 323–338.CrossRefGoogle Scholar
Ender, A. & Schierwater, B., Placozoa are not derived cnidarians: evidence from molecular morphology. Molecular Biology and Evolution, 20 (2003), 130–134.CrossRefGoogle Scholar
Voigt, O., Collins, A. G., Pearse, J. S.et al., Placozoa: no longer a phylum of one. Current Biology, 14 (2004), R944–R945.CrossRefGoogle Scholar
Symposium (2005) (Nichols, S. & Worheide, G.), Sponges: new views of old animals. Integrated and Comparative Biology, 45 (2005), 333– (first few papers).Google Scholar
Frank, U., Leitz, T. & Muller, W. A., My favourite animal: the hydroid Hydractinia versatile, an informative cnidarian representative. BioEssays, 23 (2001), 963–971.CrossRefGoogle Scholar
Coates, M. M., Visual ecology and functional morphology of Cubozoa. Integrated and Comparative Biology, 43 (2003), 542–548.CrossRefGoogle ScholarPubMed
Nordstrom, K., Wallen, R., Seymour, J.et al., A simple visual system without neurons in jellyfish larvae. Proceedings of the Royal Society of London B, 270 (2003), 2349–2354.CrossRefGoogle ScholarPubMed
Nillson, D. E., Gislen, L., Coates, M. M.et al., Advanced optics in a jellyfish eye. Nature, 435 (2005), 201–205.CrossRefGoogle Scholar
Baker, A. C., Starger, C. J., McClanahan, T. R.et al., Corals' adaptive response to climate change. Nature, 430 (2004), 741.CrossRefGoogle ScholarPubMed
Pandolfi, J. M., Bradbury, R. H., Sala, E.et al., Global trajectories of the long-term decline of coral reef ecosystems. Science, 301 (2003), 955–958.CrossRefGoogle ScholarPubMed
Gardner, T. A., Cote, I. M., Gill, J. A.et al., Long-term region-wide declines in Caribbean corals. Science, 301 (2003), 958–960.CrossRefGoogle ScholarPubMed
Wild, C., Huettal, M., Klueter, A.et al., Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature, 428 (2004), 66–70.CrossRefGoogle ScholarPubMed
Symposium (2003) (Dewel, R. A.), New perspectives on the origin of metazoan complexity. Integrated and Comparative Biology, 43 (2003), 1–86. Note useful papers on hexactinellid sponges, epithelium, the Cambrian fossil record, and also the following:Google Scholar
Cartwright, P., Developmental insights into the origin of complex colonial Hydrozoa. Integrated and Comparative Biology, 43 (2003), 82–86.CrossRef
Rieger, R. M. & Ladurner, P., The significance of muscle cells for the origin of mesoderm. Integrated and Comparative Biology, 43 (2003), 47–54.CrossRef
Jacobs, D. K. & Gates, R. D., Developmental genes and the reconstruction of metazoan evolution. Integrated and Comparative Biology, 43 (2003), 11–18.CrossRef
Technau, U., Rudd, S., Maxwell, P.et al., Maintenance of ancestral complexity and non-metazoan genes in two basal Cnidaria. Trends in Genetics, 21 (2005), 633–639.CrossRef
Symposium (2002) (Garey, J. R.), The lesser known protostome taxa. Integrative and Comparative Biology, 42 (2002), 611–703. Papers on Kinorhynchs, Nematomorphs, Gastrotrichs, Loricifera, Cycliophora, Rotifers, Acanthocephala; also Nemertea (Chapter 7) and Tardigrades (Chapter 12).Google Scholar
Matthews, B. E., An Introduction to Parasitology (Cambridge: Cambridge University Press, 1998).Google Scholar
Clay, K., Parasites lost. Nature, 421 (2003), 585–586.CrossRefGoogle ScholarPubMed
Torchin, M. E., Laferty, K. D., Dobson, A. P.et al., Introduced species and their missing parasites. Nature, 421 (2003), 628–630.CrossRefGoogle ScholarPubMed
Hoek, R. M., Kesteren, R. E., Smit, A. B.et al., Altered gene expression in the host brain caused by a trematode parasite: neuropeptide genes are preferentially affected during parasitosis. Proceedings of the National Academy of Sciences, 94 (1997), 14072–14076.CrossRefGoogle ScholarPubMed
Hurst, L. D. & Randerson, J., Parasitic sex puppeteers. Scientific American, April 2002, 42–47.Google ScholarPubMed
Gibson, R., British Nemerteans (Cambridge: Cambridge University Press, 1982).Google Scholar
Little, C., The Terrestrial Invasion (Cambridge: Cambridge University Press, 1990).Google Scholar
Hodgkin, J., Horvitz, H. R., Jasny, B. R. & J. Kimble, C. elegans: sequence to biology. Science, 282 (1998), 2011. Introduction to a special issue of Science devoted to C. elegans.CrossRefGoogle Scholar
Plasterk, R. H. A., The Year of the Worm. BioEssays, 21 (1999), 105–109.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Blaxter, M., Two worms are better than one. Nature, 426 (2003), 395–396.CrossRefGoogle ScholarPubMed
Cohen, P., Review of work on RNA interference (RNAi). New Scientist, 14 September 2002, 28–33.Google Scholar
Bartolomaeus, T., Structure, function and development of segmental organs in Annelida. Hydrobiologia, 402 (1999), 21–37.CrossRefGoogle Scholar
Martin, R. & Walther, P., Effects of discharging nematocysts when an aeolid nudibranch feeds on a hydroid. Journal of the Marine Biological Association, UK, 82 (2002), 455–462.CrossRefGoogle Scholar
Greenwood, P. G., Garry, K., Hunter, A.et al., Adaptable defense: a nudibranch mucus inhibits nematocyst discharge and changes with prey type. Biological Bulletin, 206 (2004), 113–120.CrossRefGoogle ScholarPubMed
Hanlon, R. T. & Messenger, J., Cephalopod Behaviour (Oxford: Oxford University Press, 1998).Google Scholar
Budd, G. E., Why are arthropods segmented?Evolution and Development, 3 (2001), 332–342.CrossRefGoogle ScholarPubMed
Budd, G. E., Tardigrades as stem-group arthropods: the evidence from the Cambrian fauna. Zoologischer Anzeiger, 240 (2001), 265–279.CrossRefGoogle Scholar
R. A. Fortey & R. H. Thomas (eds.), Arthropod Relationships (London: Chapman & Hall, 1997).
Barclay, S., Ash, J. E. & Rowell, D. M., Environmental factors influencing the presence and abundance of a log-dwelling invertebrate, Euperipatoides rowelli. Journal of Zoology, London, 250 (2000), 425–436.CrossRefGoogle Scholar
Chen, J.-Y., Vannier, J. & Huang, D. Y., The origin of Crustacea: new evidence from the early Cambrian in China. Proceedings of the Royal Society of London B, 268 (2001), 2181–2187.CrossRefGoogle Scholar
Lavrov, D. V., Brown, W. M. & Boore, J. L., Phylogenetic position of the Pentastomida and (pan) crustacean relationships. Proceedings of the Royal Society of London B, 271 (2004), 537–544.CrossRefGoogle ScholarPubMed
Barlow, R. B., What the brain tells the eye [in the horseshoe crab]. Scientific American, April 1990, 66–71.Google ScholarPubMed
Chapman, R. F., The Insects: Structure and Function, 4th edn (Cambridge: Cambridge University Press, 1998).CrossRefGoogle Scholar
Maddrell, S. H. P., Why are there no insects in the open sea?Journal of Experimental Biology, 201 (1998), 2461–2464.Google ScholarPubMed
McLeod, M. & Braddy, S., Invasion Earth. New Scientist, 8 June 2002, 38–41.Google Scholar
Ellington, C. P., Berg, C., Willmott, A.et al., Leading-edge vortices in insect flight. Nature, 384 (1996), 626–630.CrossRefGoogle Scholar
Wootton, R., How flies fly. Nature, 400 (1999), 112–113.CrossRefGoogle ScholarPubMed
Bartolomaeus, T., Ultrastructure and formation of the body cavity lining in Phoronis muelleri. Zoomorphology, 120 (2001), 135–148.CrossRefGoogle Scholar
Peck, L. & Barnes, D. K. A., Metabolic flexibility: the key to long-term evolutionary success in Bryozoa?Proceedings of the Royal Society of London B, 271 (2004) (Suppl.), S18–S21.CrossRefGoogle ScholarPubMed
Wilkie, I. C., Mutable collagenous tissues: extracellular matrix as mechano-effector. Echinoderm Studies, 5 (1996), 61–102.Google Scholar
Aizenburg, J., Tkachenko, A., Weiner, S.et al., Calcitic microlenses as part of the photoreceptor system in brittle stars. Nature, 412 (2001), 819–822.CrossRefGoogle Scholar
Eaves, A. A. & Palmer, A. R., Widespread cloning in echinoderm larvae. Nature, 425 (2003), 146.CrossRefGoogle ScholarPubMed
Vickery, M. S. & McClintock, J. B., Regeneration in metazoan larvae. Nature, 394 (1998), 140.CrossRefGoogle Scholar
Lacalli, T. C., Vetulicolians: are they deuterostomes? Chordates?BioEssays, 24 (2002), 208–211.CrossRefGoogle ScholarPubMed
Shu, D. G., Morris, S. Conway, Chen, H.et al., Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414 (2001), 419–424.CrossRefGoogle Scholar
Dilly, P. N., Cephalodiscus graptolitoides sp.nov.: a probable extant graptolite. Journal of Zoology, London, 229 (1993), 69–78.CrossRefGoogle Scholar
Rigby, S., Graptolites come to life. Nature, 362 (1993), 209–210.CrossRefGoogle Scholar
Lowe, C. J., Wu, M., Salic, A.et al., Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell, 113 (2003), 853–865.CrossRefGoogle ScholarPubMed
Tautz, D., Chordate evolution in a new light [comment on paper by Lowe et al.] Cell, 113 (2003), 812–813.CrossRefGoogle Scholar
Ruppert, E. E., Evolutionary origin of the vertebrate nephron. American Zoologist, 34 (1994), 542–553.CrossRefGoogle Scholar
Mayer, G. & Bartolomaeus, T., Ultrastructure of stomocord and heart glomerulus complex in Rhabdopleura compacta (Pterobranchiata) and phylogenetic implications. Zoomorphology, 122 (2003), 125–133.CrossRefGoogle Scholar
Henry, J. Q., Tagawa, K. & Martindale, M. Q., Deuterostome evolution: early development in the enteropneust hemichordate Ptychodera flava. Evolution and Development, 3 (2001), 375–390.CrossRefGoogle ScholarPubMed
Nakajima, Y., Humphreys, T. & Kaneko, H.et al., Development and neural organisation of the tornaria larva of the Hawaiian hemichordate Ptychodera flava. Zoological Science, 21 (2004), 69–78.CrossRefGoogle ScholarPubMed
Dover, C. L., The Ecology of Deep-sea Hydrothermal Vents (Princeton, NJ: Princeton University Press, 2000).Google Scholar
Little, C. T. S. & Vrijenhoek, R. C., Are hydrothermic vent animals living fossils?Trends in Ecology and Evolution, 18 (2003), 582–588.CrossRefGoogle Scholar
Byatt, A., Fothergill, A. & Holmes, M., The Blue Planet: a Natural History of the Oceans (London: BBC, 2001). (Based on David Attenborough's television series).Google Scholar
Wolpert, L., Beddington, R. S. P., Brockes, J. P.et al., Principles of Development, 2nd edn (London: Current Biology, 2002).Google Scholar
Lawrence, P. A., The Making of a Fly: the Genetics of Animal Design (Oxford: Blackwell, 1992).Google Scholar
Minelli, A., The Development of Animal Form: Ontogeny, Morphology and Evolution (Cambridge: Cambridge University Press, 2003).CrossRefGoogle Scholar
Lambert, J. D. & Nagy, L. M., Asymmetrical inheritance of centrosomally localised mRNAs during embryonic cleavages. Nature, 420 (2002), 682–686.CrossRefGoogle Scholar
Lemaire, P. & Marcellini, S., Early animal embryogenesis. Biologist, 50 (2003), 137–140.Google Scholar
Wray, G. A., Punctuated evolution of embryos. Science, 267 (1995), 1115–1116.CrossRefGoogle ScholarPubMed
Martindale, M. Q. & Henry, J. Q., Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Developmental Biology, 214 (1999), 243–257.CrossRefGoogle Scholar
Lee, J.-Y. & Goldstein, B., Mechanisms of cell positioning during C. elegans gastrulation. Development, 130 (2003), 307–320.CrossRefGoogle ScholarPubMed
Goldstein, B. & Freeman, G., Axis specification in animal development. BioEssays, 19 (1997), 105–116.CrossRefGoogle ScholarPubMed
Angerer, L. M. & Angerer, R. C., Animal–vegetal axis patterning mechanisms in the early sea urchin embryo. Developmental Biology, 218 (2000), 1–12.CrossRefGoogle ScholarPubMed
Bayascas, J. R., Castillo, E., Muñoz-Mármol, A. M.et al., Planarian Hox genes: novel patterns of expression during regeneration. Development, 124 (1997), 141–148.Google ScholarPubMed
Raff, R. A., Evo-devo: the evolution of a new discipline. Nature Reviews Genetics, 1 (2000), 74–79.CrossRefGoogle ScholarPubMed
Wagner, G. P., What is the promise of developmental evolution?Journal of Experimental Zoology, 288 (2000), 95–98.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wolpert, L. & Szathma'ry, E., Evolution and the egg. Nature, 420 (2002), 745.CrossRefGoogle Scholar
Scott, I. C. & Stainier, D. Y. R., Twisting the body into shape. Nature, 425 (2003), 461–463.CrossRefGoogle ScholarPubMed
Carroll, S. B., Endless Forms Most Beautiful: the New Science of Evo Devo and the Making of the Animal Kingdom (New York, NY: Norton, 2005).Google Scholar
Raff, R. A., The Shape of Life: Genes, Development and the Evolution of the Animal Form (Chicago, IL: University of Chicago Press, 1996).Google Scholar
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D., From DNA to Diversity, 2nd edn (Oxford: Blackwell, 2001).Google Scholar
Valentine, J. W., On the Origin of Phyla (Chicago, IL: University of Chicago Press, 2004).Google Scholar
Levine, M. & Tjian, R., Transcription regulation and animal diversity. Nature, 424 (2003), 147–151.CrossRefGoogle ScholarPubMed
Rosenburg, S. M. & Hastings, P. J., Worming into genetic instability. Nature, 430 (2004), 625–626.CrossRefGoogle Scholar
Curole, J. P. & Kocher, T. D., Mitogenomics: digging deeper with complete mitochondrial genomes. Trends in Ecology and Evolution, 14 (1999), 394–398.CrossRefGoogle ScholarPubMed
Baldauf, S. L., The deep roots of eukaryotes. Science, 300 (2003), 1703–1706.CrossRefGoogle ScholarPubMed
Martin, W. & Embley, T. M., Early evolution comes full circle. Nature, 431 (2004), 134–137.CrossRefGoogle ScholarPubMed
Simpson, A. G. B. & Roger, A. J., Eukaryotic evolution: getting to the root of the problem. Current Biology, 12 (2002), R691–R693.CrossRefGoogle Scholar
Wainright, P. O., Hinkle, G., Sogin, M. L.et al., Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science, 260 (1993), 340–342.CrossRefGoogle ScholarPubMed
King, N. & Carroll, S. B., A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proceedings of the National Academy of Sciences, 98 (2001), 15032–15037.CrossRefGoogle ScholarPubMed
King, N., Hittenger, C. T. & Carroll, S. B., Evolution of key cell signaling and adhesion protein families predates animal origins. Science, 301 (2003), 361–363.CrossRefGoogle ScholarPubMed
Bode, H., Matinez, D., Shenk, M. A.et al., Evolution of head development. Biological Bulletin, 196 (1999), 408–410.CrossRefGoogle ScholarPubMed
Bode, H. R., The role of Hox genes in axial patterning in Hydra. American Zoologist, 41 (2001), 621–628.Google Scholar
Finnerty, J. R., Master, V. A., Irvine, S.et al., Homeobox genes in the Ctenophora: identification of ‘paired’ type and Hox homologues in the atentaculate ctenophore Beroe ovata. Molecular Marine Biology and Biotechnology, 5 (1996), 249–258.Google ScholarPubMed
Henry, J. Q. & Martindale, M. Q., Inductive interactions and embryonic equivalence groups in a basal metazoan, the ctenophore Mnemiopsis leidyi. Evolution and Development, 6 (2004), 17–24.CrossRefGoogle Scholar
Boyer, B. C., Regulative development in a spiralian embryo as shown by deletion experiments on the Acoel, Childia. Journal of Experimental Zoology, 176 (1971), 97–106.CrossRefGoogle Scholar
Henry, J. Q. & Boyer, B. C., The unique developmental program of the acoel flatworm Neochildia fusca. Developmental Biology, 220 (2000), 285–293.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J.et al., Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283 (1999), 1919–1923.CrossRefGoogle Scholar
Telford, M. J., Lockwood, A. E., Cartwright-Finch, C.et al., Combined large and small subunit RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London B, 270 (2003), 1077–1083.CrossRefGoogle ScholarPubMed
Baguña, J. & Riutort, M., The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays, 26 (2004), 1046–1057.CrossRefGoogle ScholarPubMed
Cook, C. E., Jiménez, E., Akam, M.et al., The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution and Development, 6 (2004), 154–163.CrossRefGoogle ScholarPubMed
Erwin, D. H. & Davidson, E. H., The last common bilaterian ancestor. Development, 129 (2002), 3021–3032.Google ScholarPubMed
Carranza, S., Baguña, J. & Riutort, M., Are the platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology and Evolution, 14 (1997), 485–497.CrossRefGoogle ScholarPubMed
Saló, E., Tauler, J., Jiménez, E.et al., Hox and paraHox genes in flatworms: characterisation and expression. American Zoologist, 41 (2001), 652–663.Google Scholar
Maslakova, S. A. & Norenburg, J. L., Trochophore larva is plesiomorphic for nemerteans: evidence for prototroch in a basal nemertean, Carinoma tremaphorus (Paleonemertea). American Zoologist, 41 (2001), 1515–1516.Google Scholar
Thollesson, M. & Norenburg, J. L., Ribbon worm relationships: a phylogeny of the phylum ‘Nemertea’. Proceedings of the Royal Society of London B, 270 (2002), 407–415.CrossRefGoogle Scholar
Turbeville, J. M., Progress in nemertean biology: development and phylogeny. Integrated and Comparative Biology, 42 (2002), 692–703.CrossRefGoogle ScholarPubMed
Shankland, M. & Seaver, E. C., Evolution of the bilaterian body plan: what have we learnt from annelids?Proceedings of the National Academy of Sciences, 97 (2000), 4434–4437.CrossRefGoogle Scholar
Robertis, E. M., The ancestry of segmentation. Nature, 387 (1997), 25.CrossRefGoogle ScholarPubMed
Lee, P. N., Callaerts, P., Couet, H. G.et al., Cephalopod Hox genes and the origin of morphological novelties. Nature, 424 (2003), 1061–1065.CrossRefGoogle ScholarPubMed
Rosa, R., Grenier, J. K., Andreeva, T.et al., Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399 (1999), 772–776.CrossRefGoogle ScholarPubMed
Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M. A.et al., Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267 (1995), 1641–1643.CrossRefGoogle ScholarPubMed
Cohen, B. L., Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proceedings of the Royal Society of London B, 267 (2000), 225–331.CrossRefGoogle Scholar
Kobayashi, M., Furuya, H. & Holland, P. W. H., Dicyemids are higher animals. Nature, 401 (1999), 762.Google ScholarPubMed
Anderson, C. L., Canning, E. U. & Okamura, B., A triploblast origin for Myxozoa?Nature, 392 (1998), 346.CrossRefGoogle ScholarPubMed
Monteiro, A. S., Okamura, B. & Holland, P. W. H., Orphan worm finds a home: Buddenbrockia is a myxozoan. Molecular Biology and Evolution, 19 (2002), 968–971.CrossRefGoogle ScholarPubMed
Papillon, D., Perez, Y., Caubit, X.et al., Hox gene survey in the chaetognath Spadella cephalaptera: evolutionary implications. Development, Genes and Evolution, 213 (2003), 142–148.Google ScholarPubMed
Telford, M. J., Affinity for arrow worms. Nature, 431 (2004), 254–256.CrossRefGoogle ScholarPubMed
Shear, W. A., End of the ‘Uniramia’ taxon. Nature, 359 (1992), 477–478.CrossRefGoogle Scholar
Averof, M. & Cohen, S. M., Evolutionary origin of insect wings from ancestral gills. Nature, 385 (1997), 627–630.CrossRefGoogle ScholarPubMed
Ogg, S., Paradis, S., Gottlieb, S.et al., The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in Caenorhabditis elegans. Nature, 389 (1997), 994–999.CrossRefGoogle Scholar
Ramskold, L. & Hou, X., New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351 (1991), 225–228.CrossRefGoogle Scholar
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S.et al., Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387 (1997), 489–493.CrossRefGoogle ScholarPubMed
Adoutte, A., Balavoine, G., Lartillot, N.et al., The new animal phylogeny: reliability and implications. Proceedings of the National Academy of Sciences, 93 (2000), 4453–4456.CrossRefGoogle Scholar
Graham, A., Animal phylogeny: root and branch surgery. Current Biology, 10 (2000), R36–R38.CrossRefGoogle ScholarPubMed
Arthur, W., The emerging conceptual framework of evolutionary developmental biology. Nature, 415 (2002), 757–764.CrossRefGoogle ScholarPubMed
Lowe, C. J. & Wray, G. A., Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature, 389 (1997), 718–721.CrossRefGoogle ScholarPubMed
Wray, G. A. & Lowe, C. J., Developmental regulatory genes and echinoderm evolution. Systematic Biology, 49 (2000), 28–51.CrossRefGoogle ScholarPubMed
Bromham, L. D. & Degnan, B. M., Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate and echinoderm clade. Evolution and Development, 1 (1999), 166–171.CrossRefGoogle ScholarPubMed
Cameron, C. B., Particle retention and flow in the pharynx of the hemichordate worm Harrimania planktophilus: the filter feeding pharynx may have evolved before the chordates. Biological Bulletin, 202 (2002), 182–200.CrossRefGoogle ScholarPubMed
Tagawa, K., Satoh, N. & Humphreys, T., Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates. Evolution and Development, 3 (2001), 443–454.CrossRefGoogle ScholarPubMed
Dehal, P., Satou, Y., Campbell, R. K.et al., The draft genome of Ciona intestinalis: insights into chordate–vertebrate origins. Science, 298 (2002), 2157–2167.CrossRefGoogle Scholar
Gee, H., Return of a little squirt. Nature, 420 (2002), 755–756.CrossRefGoogle ScholarPubMed
Patel, N. H., Time, space and genomes. Nature, 431 (2004), 28–29.CrossRefGoogle ScholarPubMed
Seo, H.-C., Edvardsen, R. B., Maeland, A. D.et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature, 431 (2004), 67–71.CrossRefGoogle ScholarPubMed
Robertis, E. M. & Sasai, Y., A common plan for dorsoventral patterning in Bilateria. Nature, 380 (1996), 37–40.CrossRefGoogle ScholarPubMed
Bourlat, S., Nielsen, C., Lockyer, A. E.et al., Xenoturbella is a deuterostome that eats molluscs. Nature, 424 (2003), 925–928.CrossRefGoogle ScholarPubMed
Delsuc, F., Brinkmann, H., Chourrot, D. & Philippe, H., Tunicates and not cephalochordates are the closet living relatives of vertebrates. Nature, 439 (2006), 965–968.CrossRefGoogle ScholarPubMed
Carroll, S. B., Homeotic genes and the evolution of arthropods and chordates. Nature, 376 (1995), 479–485.CrossRefGoogle ScholarPubMed
Averof, M. & Akam, M., Hox genes and the diversification of insect and crustacean body plans. Nature, 376 (1995), 420–423.CrossRefGoogle ScholarPubMed
Averof, M., Origin of the spider's head. Nature, 395 (1998), 436–437.CrossRefGoogle ScholarPubMed
Boore, J. L., Lavrov, D. V. & Brown, W. M., Gene translocation links insects and crustaceans. Nature, 392 (1998), 667–668.CrossRefGoogle ScholarPubMed
Akam, M., Hox genes: from master genes to micromanagers. Current Biology, 8 (1998), R676–R678.CrossRefGoogle ScholarPubMed
Akam, M., Arthropods: developmental diversity within a (super) phylum. Proceedings of the National Academy of Sciences, 97 (2000), 4438–4441.CrossRefGoogle ScholarPubMed
Levine, M., How insects lose their limbs. Nature, 415 (2002), 848–849.CrossRefGoogle ScholarPubMed
Galant, T. R. & Carroll, S. B., Evolution of a transcriptional repression domain in an insect Hox protein. Nature, 415 (2002), 910–913.CrossRefGoogle Scholar
Cook, C. E., Smith, M. L., Telford, M. J.et al., Hox genes and the phylogeny of arthropods. Current Biology, 11 (2001), 759–763.CrossRefGoogle ScholarPubMed
Nardi, F., Spinsanti, G., J. L. Boore et al., Hexapod origins: monophyletic or paraphyletic?Science, 299 (2003), 1887–1889.CrossRefGoogle ScholarPubMed
Tautz, D., Debatable homologies. Nature, 395 (1998), 17–19.CrossRefGoogle ScholarPubMed
Bolker, J. A. & Raff, R. A., Developmental genetics and traditional homology. BioEssays, 18 (1996), 489–494.CrossRefGoogle ScholarPubMed
Hall, B. K. (ed.), Homology: the Hierarchical Basis of Comparative Biology (San Diego: Academic Press, 1994).Google Scholar
Hall, B. K., Descent with modification: the unity underlying homology as seen through an analysis of development and evolution. Biological Reviews, 78 (2003), 409–433.CrossRefGoogle ScholarPubMed
McGhee, J. D., Homologous tails? Or tales of homology?BioEssays, 22 (2000), 781–785.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Quiring, R., Waldorf, U., Kloter, U.et al., Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science, 265 (1994), 785–789.CrossRefGoogle ScholarPubMed
Gehring, W. J. & Ikeo, K., Pax 6: mastering eye morphogenesis and eye evolution. Trends in Genetics, 15 (1999), 371–381.CrossRefGoogle ScholarPubMed
Tomarev, S. I., Callaerts, P., Koss, L.et al., Squid Pax-6 and eye development. Proceedings of the National Academy of Sciences, 94 (1997), 2421–2426.CrossRefGoogle ScholarPubMed
Raff, R. A., The Shape of Life: Genes, Development and the Evolution of the Animal Form (Chicago, IL: University of Chicago Press, 1996).Google Scholar
Carroll, S. B., Grenier, J. K. & Weatherbee, S. D., From DNA to Diversity, 2nd edn (Oxford: Blackwell, 2001).Google Scholar
Valentine, J. W., On the Origin of Phyla (Chicago, IL: University of Chicago Press, 2004).Google Scholar
Levine, M. & Tjian, R., Transcription regulation and animal diversity. Nature, 424 (2003), 147–151.CrossRefGoogle ScholarPubMed
Rosenburg, S. M. & Hastings, P. J., Worming into genetic instability. Nature, 430 (2004), 625–626.CrossRefGoogle Scholar
Curole, J. P. & Kocher, T. D., Mitogenomics: digging deeper with complete mitochondrial genomes. Trends in Ecology and Evolution, 14 (1999), 394–398.CrossRefGoogle ScholarPubMed
Baldauf, S. L., The deep roots of eukaryotes. Science, 300 (2003), 1703–1706.CrossRefGoogle ScholarPubMed
Martin, W. & Embley, T. M., Early evolution comes full circle. Nature, 431 (2004), 134–137.CrossRefGoogle ScholarPubMed
Simpson, A. G. B. & Roger, A. J., Eukaryotic evolution: getting to the root of the problem. Current Biology, 12 (2002), R691–R693.CrossRefGoogle Scholar
Wainright, P. O., Hinkle, G., Sogin, M. L.et al., Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science, 260 (1993), 340–342.CrossRefGoogle ScholarPubMed
King, N. & Carroll, S. B., A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proceedings of the National Academy of Sciences, 98 (2001), 15032–15037.CrossRefGoogle ScholarPubMed
King, N., Hittenger, C. T. & Carroll, S. B., Evolution of key cell signaling and adhesion protein families predates animal origins. Science, 301 (2003), 361–363.CrossRefGoogle ScholarPubMed
Bode, H., Matinez, D., Shenk, M. A.et al., Evolution of head development. Biological Bulletin, 196 (1999), 408–410.CrossRefGoogle ScholarPubMed
Bode, H. R., The role of Hox genes in axial patterning in Hydra. American Zoologist, 41 (2001), 621–628.Google Scholar
Finnerty, J. R., Master, V. A., Irvine, S.et al., Homeobox genes in the Ctenophora: identification of ‘paired’ type and Hox homologues in the atentaculate ctenophore Beroe ovata. Molecular Marine Biology and Biotechnology, 5 (1996), 249–258.Google ScholarPubMed
Henry, J. Q. & Martindale, M. Q., Inductive interactions and embryonic equivalence groups in a basal metazoan, the ctenophore Mnemiopsis leidyi. Evolution and Development, 6 (2004), 17–24.CrossRefGoogle Scholar
Boyer, B. C., Regulative development in a spiralian embryo as shown by deletion experiments on the Acoel, Childia. Journal of Experimental Zoology, 176 (1971), 97–106.CrossRefGoogle Scholar
Henry, J. Q. & Boyer, B. C., The unique developmental program of the acoel flatworm Neochildia fusca. Developmental Biology, 220 (2000), 285–293.CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J.et al., Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283 (1999), 1919–1923.CrossRefGoogle Scholar
Telford, M. J., Lockwood, A. E., Cartwright-Finch, C.et al., Combined large and small subunit RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London B, 270 (2003), 1077–1083.CrossRefGoogle ScholarPubMed
Baguña, J. & Riutort, M., The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays, 26 (2004), 1046–1057.CrossRefGoogle ScholarPubMed
Cook, C. E., Jiménez, E., Akam, M.et al., The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution and Development, 6 (2004), 154–163.CrossRefGoogle ScholarPubMed
Erwin, D. H. & Davidson, E. H., The last common bilaterian ancestor. Development, 129 (2002), 3021–3032.Google ScholarPubMed
Carranza, S., Baguña, J. & Riutort, M., Are the platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology and Evolution, 14 (1997), 485–497.CrossRefGoogle ScholarPubMed
Saló, E., Tauler, J., Jiménez, E.et al., Hox and paraHox genes in flatworms: characterisation and expression. American Zoologist, 41 (2001), 652–663.Google Scholar
Maslakova, S. A. & Norenburg, J. L., Trochophore larva is plesiomorphic for nemerteans: evidence for prototroch in a basal nemertean, Carinoma tremaphorus (Paleonemertea). American Zoologist, 41 (2001), 1515–1516.Google Scholar
Thollesson, M. & Norenburg, J. L., Ribbon worm relationships: a phylogeny of the phylum ‘Nemertea’. Proceedings of the Royal Society of London B, 270 (2002), 407–415.CrossRefGoogle Scholar
Turbeville, J. M., Progress in nemertean biology: development and phylogeny. Integrated and Comparative Biology, 42 (2002), 692–703.CrossRefGoogle ScholarPubMed
Shankland, M. & Seaver, E. C., Evolution of the bilaterian body plan: what have we learnt from annelids?Proceedings of the National Academy of Sciences, 97 (2000), 4434–4437.CrossRefGoogle Scholar
Robertis, E. M., The ancestry of segmentation. Nature, 387 (1997), 25.CrossRefGoogle ScholarPubMed
Lee, P. N., Callaerts, P., Couet, H. G.et al., Cephalopod Hox genes and the origin of morphological novelties. Nature, 424 (2003), 1061–1065.CrossRefGoogle ScholarPubMed
Rosa, R., Grenier, J. K., Andreeva, T.et al., Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399 (1999), 772–776.CrossRefGoogle ScholarPubMed
Halanych, K. M., Bacheller, J. D., Aguinaldo, A. M. A.et al., Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267 (1995), 1641–1643.CrossRefGoogle ScholarPubMed
Cohen, B. L., Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proceedings of the Royal Society of London B, 267 (2000), 225–331.CrossRefGoogle Scholar
Kobayashi, M., Furuya, H. & Holland, P. W. H., Dicyemids are higher animals. Nature, 401 (1999), 762.Google ScholarPubMed
Anderson, C. L., Canning, E. U. & Okamura, B., A triploblast origin for Myxozoa?Nature, 392 (1998), 346.CrossRefGoogle ScholarPubMed
Monteiro, A. S., Okamura, B. & Holland, P. W. H., Orphan worm finds a home: Buddenbrockia is a myxozoan. Molecular Biology and Evolution, 19 (2002), 968–971.CrossRefGoogle ScholarPubMed
Papillon, D., Perez, Y., Caubit, X.et al., Hox gene survey in the chaetognath Spadella cephalaptera: evolutionary implications. Development, Genes and Evolution, 213 (2003), 142–148.Google ScholarPubMed
Telford, M. J., Affinity for arrow worms. Nature, 431 (2004), 254–256.CrossRefGoogle ScholarPubMed
Shear, W. A., End of the ‘Uniramia’ taxon. Nature, 359 (1992), 477–478.CrossRefGoogle Scholar
Averof, M. & Cohen, S. M., Evolutionary origin of insect wings from ancestral gills. Nature, 385 (1997), 627–630.CrossRefGoogle ScholarPubMed
Ogg, S., Paradis, S., Gottlieb, S.et al., The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in Caenorhabditis elegans. Nature, 389 (1997), 994–999.CrossRefGoogle Scholar
Ramskold, L. & Hou, X., New early Cambrian animal and onychophoran affinities of enigmatic metazoans. Nature, 351 (1991), 225–228.CrossRefGoogle Scholar
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S.et al., Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387 (1997), 489–493.CrossRefGoogle ScholarPubMed
Adoutte, A., Balavoine, G., Lartillot, N.et al., The new animal phylogeny: reliability and implications. Proceedings of the National Academy of Sciences, 93 (2000), 4453–4456.CrossRefGoogle Scholar
Graham, A., Animal phylogeny: root and branch surgery. Current Biology, 10 (2000), R36–R38.CrossRefGoogle ScholarPubMed
Arthur, W., The emerging conceptual framework of evolutionary developmental biology. Nature, 415 (2002), 757–764.CrossRefGoogle ScholarPubMed
Lowe, C. J. & Wray, G. A., Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature, 389 (1997), 718–721.CrossRefGoogle ScholarPubMed
Wray, G. A. & Lowe, C. J., Developmental regulatory genes and echinoderm evolution. Systematic Biology, 49 (2000), 28–51.CrossRefGoogle ScholarPubMed
Bromham, L. D. & Degnan, B. M., Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate and echinoderm clade. Evolution and Development, 1 (1999), 166–171.CrossRefGoogle ScholarPubMed
Cameron, C. B., Particle retention and flow in the pharynx of the hemichordate worm Harrimania planktophilus: the filter feeding pharynx may have evolved before the chordates. Biological Bulletin, 202 (2002), 182–200.CrossRefGoogle ScholarPubMed
Tagawa, K., Satoh, N. & Humphreys, T., Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates. Evolution and Development, 3 (2001), 443–454.CrossRefGoogle ScholarPubMed
Dehal, P., Satou, Y., Campbell, R. K.et al., The draft genome of Ciona intestinalis: insights into chordate–vertebrate origins. Science, 298 (2002), 2157–2167.CrossRefGoogle Scholar
Gee, H., Return of a little squirt. Nature, 420 (2002), 755–756.CrossRefGoogle ScholarPubMed
Patel, N. H., Time, space and genomes. Nature, 431 (2004), 28–29.CrossRefGoogle ScholarPubMed
Seo, H.-C., Edvardsen, R. B., Maeland, A. D.et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature, 431 (2004), 67–71.CrossRefGoogle ScholarPubMed
Robertis, E. M. & Sasai, Y., A common plan for dorsoventral patterning in Bilateria. Nature, 380 (1996), 37–40.CrossRefGoogle ScholarPubMed
Bourlat, S., Nielsen, C., Lockyer, A. E.et al., Xenoturbella is a deuterostome that eats molluscs. Nature, 424 (2003), 925–928.CrossRefGoogle ScholarPubMed
Delsuc, F., Brinkmann, H., Chourrot, D. & Philippe, H., Tunicates and not cephalochordates are the closet living relatives of vertebrates. Nature, 439 (2006), 965–968.CrossRefGoogle ScholarPubMed
Carroll, S. B., Homeotic genes and the evolution of arthropods and chordates. Nature, 376 (1995), 479–485.CrossRefGoogle ScholarPubMed
Averof, M. & Akam, M., Hox genes and the diversification of insect and crustacean body plans. Nature, 376 (1995), 420–423.CrossRefGoogle ScholarPubMed
Averof, M., Origin of the spider's head. Nature, 395 (1998), 436–437.CrossRefGoogle ScholarPubMed
Boore, J. L., Lavrov, D. V. & Brown, W. M., Gene translocation links insects and crustaceans. Nature, 392 (1998), 667–668.CrossRefGoogle ScholarPubMed
Akam, M., Hox genes: from master genes to micromanagers. Current Biology, 8 (1998), R676–R678.CrossRefGoogle ScholarPubMed
Akam, M., Arthropods: developmental diversity within a (super) phylum. Proceedings of the National Academy of Sciences, 97 (2000), 4438–4441.CrossRefGoogle ScholarPubMed
Levine, M., How insects lose their limbs. Nature, 415 (2002), 848–849.CrossRefGoogle ScholarPubMed
Galant, T. R. & Carroll, S. B., Evolution of a transcriptional repression domain in an insect Hox protein. Nature, 415 (2002), 910–913.CrossRefGoogle Scholar
Cook, C. E., Smith, M. L., Telford, M. J.et al., Hox genes and the phylogeny of arthropods. Current Biology, 11 (2001), 759–763.CrossRefGoogle ScholarPubMed
Nardi, F., Spinsanti, G., J. L. Boore et al., Hexapod origins: monophyletic or paraphyletic?Science, 299 (2003), 1887–1889.CrossRefGoogle ScholarPubMed
Tautz, D., Debatable homologies. Nature, 395 (1998), 17–19.CrossRefGoogle ScholarPubMed
Bolker, J. A. & Raff, R. A., Developmental genetics and traditional homology. BioEssays, 18 (1996), 489–494.CrossRefGoogle ScholarPubMed
Hall, B. K. (ed.), Homology: the Hierarchical Basis of Comparative Biology (San Diego: Academic Press, 1994).Google Scholar
Hall, B. K., Descent with modification: the unity underlying homology as seen through an analysis of development and evolution. Biological Reviews, 78 (2003), 409–433.CrossRefGoogle ScholarPubMed
McGhee, J. D., Homologous tails? Or tales of homology?BioEssays, 22 (2000), 781–785.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Quiring, R., Waldorf, U., Kloter, U.et al., Homology of the eyeless gene of Drosophila to the small eye gene in mice and aniridia in humans. Science, 265 (1994), 785–789.CrossRefGoogle ScholarPubMed
Gehring, W. J. & Ikeo, K., Pax 6: mastering eye morphogenesis and eye evolution. Trends in Genetics, 15 (1999), 371–381.CrossRefGoogle ScholarPubMed
Tomarev, S. I., Callaerts, P., Koss, L.et al., Squid Pax-6 and eye development. Proceedings of the National Academy of Sciences, 94 (1997), 2421–2426.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Further reading
  • Janet Moore, New Hall, Cambridge
  • Book: An Introduction to the Invertebrates
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754760.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Further reading
  • Janet Moore, New Hall, Cambridge
  • Book: An Introduction to the Invertebrates
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754760.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Further reading
  • Janet Moore, New Hall, Cambridge
  • Book: An Introduction to the Invertebrates
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754760.022
Available formats
×