Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T02:47:50.657Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

Carbon nanotubes have come a long way since their modern rediscovery in 1991. This time period has afforded a great many scholars across the globe to conduct a vast amount of research investigating their fundamental properties and ensuing applications. Finally, after two decades, the knowledge and understanding obtained, once only accessible to select scholars, is now sufficiently widespread and accepted that the time is ripe for a textbook on this matter. This textbook develops the basic solid-state and device physics of carbon nanotubes and to a lesser extent graphene. The lesser coverage of graphene is simply due to its relative infancy, with a good deal of the device physics still in its formative stage.

The technical discourse starts with the solid-state physics of graphene, subsequently warping into the solid-state physics of nanotubes, which serves as the foundation of the device physics of metallic and semiconducting nanotubes. An elementary and limited introduction to the device physics of graphene nanoribbons and graphene are also developed. This textbook is suitable for senior undergraduates and graduate students with prior exposure to semiconductor devices. Students with a background in solid-state physics will find this book dovetails with their physics background and extends their knowledge into a new material that can potentially have an enormous impact in society. Scholars in the fields of materials, devices, and circuits and researchers exploring ideas and applications of nanoscience and nanotechnology will also find the book appealing as a reference or to learn something new about an old soul (carbon).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • H.-S. Philip Wong, Deji Akinwande, University of Texas, Austin
  • Book: Carbon Nanotube and Graphene Device Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778124.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • H.-S. Philip Wong, Deji Akinwande, University of Texas, Austin
  • Book: Carbon Nanotube and Graphene Device Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778124.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • H.-S. Philip Wong, Deji Akinwande, University of Texas, Austin
  • Book: Carbon Nanotube and Graphene Device Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511778124.001
Available formats
×