Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-30T08:18:40.338Z Has data issue: false hasContentIssue false

8 - Carbon nanotube field-effect transistors

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

Innovation is everything. When you are on the forefront, you can see what the next innovation needs to be.

Robert Noyce (co-inventor of integrated circuits and co-founder of Intel)

Introduction

In analogy to a water pipe that allows the guided flow of water, a transistor is an electronic device that allows for the guided flow of electrons with the key innovation being the influence of a gate that controls the amount of flowing electrons (the gate is similar in concept to a valve controlling the amount of water). The most popular flavor of the transistor is the field-effect transistor (FET), which came to reality in 1960 and forms the cornerstone of modern electronics that has revolutionized computing, communications, automation, and healthcare and fosters today's digital lifestyles. In part due to the continuous miniaturization or scaling of the transistor dimensions, silicon (Si) has evolved to be the de facto semiconductor for making transistors that enable smaller, faster, cheaper, and more power-efficient integrated circuits (also called chips) for an extensive variety of applications. However, transistor scaling and the resulting performance enhancement cannot continue forever owing to both physical and technical reasons. Obviously, the transistor cannot be reduced to a size of zero length for example, and this imposes a physical limit to the miniaturization of devices. Fortunately, we have yet to reach this physical limit. At present, the more pressing issues are technical in nature: relating to the challenges of fabricating small transistors and, in addition, the significance at short size scales of some otherwise undesirable device phenomena which are collectively referred to as short-channel or small-dimension effects.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×