Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T22:08:54.792Z Has data issue: false hasContentIssue false

62 - Environmental history and forest regeneration dynamics in a degraded valley of north-west Argentina's cloud forests

from Part VII - Cloud forest conservation, restoration, and management issues

Published online by Cambridge University Press:  03 May 2011

H. R. Grau
Affiliation:
Universidad Nacional de Tucumán, Argentina
J. Carilla
Affiliation:
Universidad Nacional de Tucumán, Argentina
R. Gil-Montero
Affiliation:
Universidad Nacional de Tucumán, Argentina
R. Villalba
Affiliation:
Instituto Argentino de Nivología, Argentina
E. Araoz
Affiliation:
Universidad Nacional de Tucumán, Argentina
G. Masse
Affiliation:
Instituto Nacional de Estadísticas y Censos, Argentina
M. de Membiela
Affiliation:
Instituto Argentino de Nivología, Argentina
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Extensive areas of montane cloud forests have been transformed into degraded grasslands due to intensive land use in the past. As a consequence of economic modernization and rural-to-urban migration, land-use intensity is decreasing in many of these areas. This chapter combines analysis of historic land use with dendrochronologic estimates of climate, fire, and tree establishment to explore the interactions between climate, socio-economic changes, and vegetation dynamics in a degraded valley in the cloud forest life zone of NW Argentina. During the twentieth century, population increased and became concentrated in the local capital township. State and services employment increased while density of domestic grazers decreased in the second half of the century. Rainfall increased; the period post-1970 was moister than the previous 250 years. Despite these trends, secondary tree species are not colonizing degraded grasslands in this area. The increase in rainfall and decrease in grazing intensity is negatively associated with tree recruitment, particularly with respect to Podocarpus parlatorei, the dominant tree species in secondary forests adjacent to pasture. The interpretation offered here is that decreased grazing and increased rainfall has favored grassland over shrubland. Grasslands are maintained by frequent fire, which eliminates Podocarpus seedlings and unpalatable shrubs that, in turn, facilitate Podocarpus recruitment by providing perches for seed dispersal and generate a less stressful micro-environment. Only in particular years following periods of intense fire activity, Alnus acuminata, a highly light-demanding tree species, recruits. […]

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 597 - 604
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aide, T. M., and Cavelier, J. (1994). Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecology 2: 219–229.CrossRefGoogle Scholar
Aide, T. M., and Grau, H. R. (2004). Globalization, migration, and Latin American ecosystems. Science 305: 1915–1916.CrossRefGoogle ScholarPubMed
Arno, S. F., and Sneck, K. M. (1977). A Method for Determining Fire History in Coniferous Forests of the Mountain West, Technical Report No. INT-42. Washington, DC: U.S. Department of Agriculture Forest Service.Google Scholar
Bai, Y., Broersma, K., Thompson, D., and Ross, T. J. (2004). Landscape-level dynamics of grassland-forest transitions in British Columbia. Rangeland Ecology and Management 57: 66–75.CrossRefGoogle Scholar
Brown, A. D., Grau, H. R., Malizia, L. R., and Grau, A. (2001). Argentina. In Bosques nublados del Neotropico, eds. Kappelle, M. and Brown, A. D., pp. 456–464. Heredia, Costa Rica: INBIO.Google Scholar
Carilla, J., Grau, H. R., and Malizia, A. (2006). Successional rates in post-grazing secondary forests in NW Argentina mountains. In Land Use Change and Mountain Biodiversity, eds. Spehn, E., Liebermann, M., and Korner, C., pp. 265–276. Boca Raton, FL: CRC Press.Google Scholar
Cavelier, J., Aide, T. M., Santos, C., Eusse, A. M., and Dupuy, J. M. (1998). The savannization of moist forests in Sierra Nevada de Santa Marta, Colombia. Journal of Biogeography 25: 901–912.CrossRefGoogle Scholar
Grau, A. (1985). La expansión del Aliso del cerro (Alnus acuminata HBK, subsp. acuminata) en el noroeste de Argentina. Lilloa 36: 237–247.Google Scholar
Grau, H. R. (2003). Ecología del fuego en los ecosistemas montanos superiores del subtrópico. In Fuego en los ecosistemas de Argentina, eds. Kuntz, C., Bravo, S., and Paniglati, J. L., pp. 181–188. Santiago del Estero, Argentina: Instituto Nacional de Tecnología Agropecuaria.Google Scholar
Grau, H. R., and Veblen, T. T. (2000). Rainfall variability, fire, and vegetation dynamics in subtropical montane forests in northwestern Argentina. Journal of Biogeography 27: 1107–1121.CrossRefGoogle Scholar
Grau, H. R., Aide, T. M, Zimmerman, J. K., et al. (2003a). The ecological consequences of socioeconomic and land use changes in post agricultural Puerto Rico. BioScience 53: 1159–1168.CrossRefGoogle Scholar
Grau, H. R., Easdale, T. A., and Paolini, L. (2003b). Subtropical dendroecology: dating disturbances and forest dynamics in subtropical mountains of NW Argentina. Forest Ecology and Management 177: 131–143.CrossRefGoogle Scholar
Grau, H. R., Perez-Ceballos, M., Martinuzzi, S., Encarnación, X., and Aide, T. M. (2008). Cambios socioeconómicos y regeneración del bosque en República Dominicana. In Restauración ecológica en América Latina, eds. Gonzalez-Espinosa, M., Rey-Benayas, J. M., and Ramírez-Marcial, N., pp. 211–227. México, DF: Editorial Mundi Prensa.Google Scholar
Gil Montero, R. (2005). Poblaciones de frontera: Los Toldos en los siglos XIX y XX. Anuario de Estudios Bolivianos Archivisticos y Bibliográficos 11: 125–140.Google Scholar
Hartig, K., and Beck, E. (2003). The Bracken fern (Pteridium arachnoideum Kaulf.) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.Google Scholar
Higgins, S. I., and Richardson, D. M. (1999). Pine invasions in the southern hemisphere: modelling interactions between organisms, environment and disturbance. Plant Ecology 135: 79–93.CrossRefGoogle Scholar
Hobbs, R. J., and Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology 4: 93–110.CrossRefGoogle Scholar
Holmes, R. L. (1983). Computer assisted quality control in tree ring dating and measuring. Tree Ring Bulletin 43: 69–76.Google Scholar
Jokisch, B. D., and Lair, B. M. (2002). One last stand: forests and change in Ecuador's eastern Cordillera. Geographical Review 92: 235–256.CrossRefGoogle Scholar
Kipfmueller, K. F., and Swetnam, T. W. (2001). Using dendrochronology to reconstruct the history of forest and woodland ecosystems. In The Historical Ecology Handbook: A Restorationist's Guide to Reference Ecosystems, eds. Egan, D. and Howell, E. A., pp. 199–228. Washington, DC: Island Press.Google Scholar
Malizia, A. (2003). Host tree preference of vascular epiphytes and climbers in a subtropical montane cloud forest of Northwest Argentina. Selbyana 24: 196–205.Google Scholar
Martin, P. H., and Fahey, T. J. (2006). Fire history along environmental gradients in the subtropical pine forests of the Cordillera Central, Dominican Republic. Journal of Tropical Ecology 22: 289–302.CrossRefGoogle Scholar
Martínez, A., Mahecha, M. D., Lischeid, G., and Beck, E. (2008). Succession stages of vegetation regeneration: secondary tropical mountain forests. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 425–431. Berlin: Springer-Verlag.Google Scholar
Minetti, J. L., and Vargas, V. M. (1997). Trends and jumps in the annual rainfall in South America, South of 15 S. Atmosfera 11: 205–221.Google Scholar
Mosandl, R., Günter, S., Stimm, B., and Weber, M. (2008). Ecuador suffers the highest deforestation rate in South America. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 37–40. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Preston, D. (1996). People on the move: migrations past and present. In Latin America Development: Geographical Perspectives, ed. Preston, D., pp. 165–187. Harlow, UK: Longman.Google Scholar
Ramadori, D. (1998). Sucesión secundaria en bosques montanos del noroeste Argentino. Ph.D. Thesis, Universidad Nacional de La Plata, La Plata, Argentina.Google Scholar
Reboratti, C. (1998). El Alto Bermejo: Realidades y conflictos. Buenos Aires, Argentina: La Colmena.Google Scholar
Sarmiento, F. (1997). Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environmental Conservation 24: 14–23.CrossRefGoogle Scholar
Scott, G. A. J. (1977). The role of fire in the creation and maintenance of savanna in the Montaña of Peru. Journal of Biogeography 4: 143–208.CrossRefGoogle Scholar
Stokes, M. A., and Smiley, T. L. (1968). An Introduction to Tree Ring Dating. Chicago, IL: University of Chicago Press.Google Scholar
Suding, K. N., Gross, L. G., and Houseman, G. R. (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19: 46–53.CrossRefGoogle ScholarPubMed
Vanacker, V., Barros, S., Poesen, J., and Deckers, J. (2003). The effect of short-term socio-economic and demographic changes on landuse dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountain catchment. Landscape Ecology 18: 1–15.CrossRefGoogle Scholar
Villalba, R. (1995). Estudios dendrocronólogicos en la selva subtropical de montaña, implicaciones para su conservación y desarrollo. In Investigación, conservación y desarrollo en selvas subtropicales de montaña, eds. Brown, A. D. and Grau, H. R., pp. 59–68. Tucumán, Argentina: Laboratorio de Investigaciones Ecológicas de las Yungas.Google Scholar
Villalba, R., Grau, H. R., Boninsegna, J., Jacoby, G., and Ripalta, A. (1998). Tree ring evidence for long term precipitation changes in subtropical South America. International Journal of Climatology 18: 1463–1478.3.0.CO;2-A>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×