Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T22:04:14.825Z Has data issue: false hasContentIssue false

65 - Forest restoration in the tropical montane cloud forest belt of central Veracruz, Mexico

from Part VII - Cloud forest conservation, restoration, and management issues

Published online by Cambridge University Press:  03 May 2011

G. Williams-Linera
Affiliation:
Instituto de Ecología, Mexico
C. Alvarez-Aquino
Affiliation:
Universidad Veracruzana, Mexico
R. A. Pedraza
Affiliation:
Universidad Veracruzana, Mexico
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Restoration practices assist in the reversal of ecological degradation of forest remnants and deforested areas. The enormous biodiversity in the cloud forests of central Veracruz, Mexico, poses a challenge to its restoration. The objectives of this study were to determine the ecological restoration potential of native tree species, and to define criteria for matching species to particular site conditions. In 1998, seedlings of Carpinus caroliniana, Fagus grandifolia var. mexicana, Juglans pyriformis, Liquidambar styraciflua, Podocarpus matudae, Quercus acutifolia, and Symplocos coccinea were planted in three forest fragment interiors, three adjacent agricultural fields, and two old-fields. Survival, height and diameter increment were evaluated using analysis of covariance with initial plant age as covariate. Initial age had a significant effect on survival but not on height or diameter increment across all species and sites. In 2004, overall survival was highest in old-field (70%), followed by forest interior (42%), and adjacent field (36%). Juglans, Podocarpus, and Quercus exhibited the greatest survival (62–80%) but intermediate height increase (26–57 cm year−1). Carpinus and Liquidambar showed intermediate survival (50–54%) but high growth rates (45–96 cm year−1). Fagus and Symplocos displayed both low survival (18–20%) and low height increments (13–29 cm year−1). It is concluded that performance of different tree species depends on site disturbance level. Juglans and Quercus have potential to be used in restoration of disturbed areas, Podocarpus in plantation enrichment, and Liquidambar and Carpinus to expand the cloud forest area. […]

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 618 - 627
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, N., Günter, S., Weber, M., and Stimm, B. (2006). Enriquecimiento de plantaciones de Pinus patula con especies nativas en el sur de Ecuador. Lyonia 10: 17–29.Google Scholar
Alvarez-Aquino, C. (2002). Regeneration of tree species in Mexican cloud forest. Ph.D. thesis, University of Edinburgh, Edinburgh, UK.Google Scholar
Alvarez-Aquino, C., and Williams-Linera, G. (2002). Seedling bank dynamics of Fagus grandifolia var. mexicana before and after a mast year in a Mexican tropical montane cloud forest. Journal of Vegetation Science 13: 179–184.Google Scholar
Alvarez-Aquino, C., Williams-Linera, G., and Newton, A. C. (2004). Experimental native tree seedling establishment for restoration of Mexican cloud forest. Restoration Ecology 12: 412–418.CrossRefGoogle Scholar
Arriaga, V., Cervantes, V., and Vargas-Mena, A. (1994). Manual de reforestación con especies nativas. Mexico, DF: Secretaría de Desarrollo Social, Instituto Nacional de Ecología y Universidad Autónoma de México.Google Scholar
Brown, S., and Lugo, A. E. (1994). Rehabilitation of tropical lands: a key to sustaining development. Restoration Ecology 2: 97–111.CrossRefGoogle Scholar
Butterfield, R. P., and Spinoza, M. (1995). Screening trial of 14 tropical hardwoods with an emphasis on species native to Costa Rica: fourth year results. New Forests 9: 35–45.CrossRefGoogle Scholar
Challenger, A. (1998). Utilización y conservación de los ecosistemas terrestres de México pasado, presente y futuro. Mexico, DF: CONABIO, Instituto de Biología UNAM, Agrupación Sierra Madre, S.C.Google Scholar
Cluzeau, C., Drapier, J., and Bruno, E. (2002). Species-site suitability indicators. In Indicators of Sustainable Management:“Tree Species and Forest Sites” and “Forest Habitats”, Vol. 2, France. eds. Drapier, J. and Colinot, A.. Available at www.svo.se/life.Google Scholar
Evans, J. (1986). Plantation Forestry in the Tropics. Oxford, UK: Oxford University Press.Google Scholar
Günter, S., Gonzalez, P., Alvarez, G., et al. (2009). Determinants of successful regeneration of abandoned pastures in the Andes: soil conditions and vegetation cover. Forest Ecology and Management 258: 81–91.CrossRefGoogle Scholar
Hartig, K. and Beck, E. (2003). The bracken fern (Pteridium arachnoideum Kaulf.) dilemma in the Andes of Southern Ecuador. Ecotropica 9: 3–13.Google Scholar
Hewitt, N., and Kellman, M. (2004). Factors influencing tree colonization in fragmented forest: an experimental study of introduced seeds and seedlings. Forest Ecology and Management 191: 39–59.CrossRefGoogle Scholar
Holl, K. D., Loik, M. E., Lin, E. H. V., and Samuels, I. A. (2000). Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restoration Ecology 8: 339–349.CrossRefGoogle Scholar
Holl, K. D., Crone, E. E., and Schultz, C. B. (2003). Landscape restoration: moving from generalities to methodologies. BioScience 53: 491–502.CrossRefGoogle Scholar
Ilstedt, U., Malmer, A., Verbeeten, E., and Murdiyarso, D. (2007). The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. Forest Ecology and Management 251: 45–51.CrossRefGoogle Scholar
Kitajima, K., and Wright, S. J. (2002). Growth–survival trade-offs tropical tree seedlings in field and nurseries, Association of Tropical Biology Annual Meeting Proceedings, p. 57.
Lamb, D. (1998). Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restoration Ecology 6: 271–279.CrossRefGoogle Scholar
Martínez, A., Mahecha, M. D., Lischeid, G., and Beck, E. (2008). Succession stages of vegetation regeneration: secondary tropical mountain forests. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 425–431. Berlin: Springer-Verlag.Google Scholar
McDonald, M. A., Hofny-Collins, A., Healey, J. R., and Goodland, T. C. R. (2003). Evaluation of trees indigenous to the montane forest of the Blue Mountains, Jamaica for reforestation and agroforestry. Forest Ecology and Management 175: 379–401.CrossRefGoogle Scholar
Moles, A. T., and Westoby, M. (2004). Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92: 372–383.CrossRefGoogle Scholar
Mosandl, R., and Günter, S. (2008). Sustainable management of tropical mountain forests in Ecuador. In The Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, eds. Gradstein, S. R., Homeier, J., and Gansert, D., pp. 177–193. Göttingen, Germany: Göttingen Centre for Biodiversity and Ecology.Google Scholar
Muñoz-Villers, L. E., and López-Blanco, J. (2008). Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico. International Journal of Remote Sensing 29: 71–93.CrossRefGoogle Scholar
Parrotta, J. A., Turnbull, J. W., and Jones, N. (1997). Catalyzing native forest regeneration on degraded tropical lands. Forest Ecology and Management 99: 1–7.CrossRefGoogle Scholar
Pedraza, R. A. (2003). Árboles nativos para plantaciones: una estrategia de restauración en áreas deforestadas. Ph.D. thesis, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico.Google Scholar
Pedraza, R. A., and Williams-Linera, G. (2003). Evaluation of native tree species for the rehabilitation of deforested areas in a Mexican cloud forest. New Forests 26: 83–99.CrossRefGoogle Scholar
Pedraza, R. A., and Williams-Linera, G. (2005). Microhabitat conditions for germination and establishment of two native temperate tree species in the Mexican montane cloud forest. Agrociencia 39: 457–467.Google Scholar
Ponette-González, A. G., Weathers, K. C., and Curran, L. M. (2009). Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, doi: 10.1111/j.1365–2486.2009.01985.x.CrossRef
Quintana-Ascencio, P. F., Ramírez-Marcial, N., González-Espinosa, M., and Martínez-Ico, M. (2004). Sapling survival and growth of coniferous and broad-leaved trees in successional highland habitats in Mexico. Applied Vegetation Science 7: 81–88.CrossRefGoogle Scholar
Rossignol, J. P. (1987). Los estudios morfoedafológicos en el área Xalapa–Coatepec, Veracruz. In La morfoedafología en la ordenación de los paisajes rurales, eds. Geissert, D. and Rossignol, J. P., pp. 23–35. Xalapa, Mexico: INIREB, ORSTOM.Google Scholar
Rzedoswki, J. (1996). Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica Mexicana 35: 25–44.CrossRefGoogle Scholar
,SAS (1997). JMP User's Guide. Cary, NC: SAS Institute.
,SEMARNAT (2002). Norma oficial mexicana NOM-059-ECOL-2001, Protección ambiental – especies nativas Mexico de flora y fauna silvestres – categorías de riesgo y especificaciones para su inclusión, exclusión o cambio en lista de especies en riesgo. Mexico, DF: Diario Oficial.
,Society for Ecological Restoration (2002). The SER Primer on Ecological Restoration. Society for Ecological Restoration Science and Policy Working Group. Available at www.ser.org/.
Sosa, V., and Gómez-Pompa, A. (1994). Flora de Veracruz: Lista florística. Fascículo 82, Xalapa, Veracruz: Instituto de Ecología, Riverside, A.C., CA:University of California.Google Scholar
Stadtmüller, T. (1987). Los bosques nublados en el trópico húmedo. Turrialba, Costa Rica: CATIE, and Tokyo: United Nations University.Google Scholar
Stimm, B., Beck, E., Günter, S., et al. (2008). Reforestation of abandoned pastures: seed ecology of native species and production of indigenous plant material. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 433–445. Berlin: Springer-Verlag.Google Scholar
Vázquez-García, J. A. (1995). Cloud forest archipelagos: preservation of fragmented montane ecosystems in tropical America. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 314–332. New York: Springer-Verlag.Google Scholar
Vázquez-Yañes, C., Batis, A. I., Alcocer, M. I., Gual, M., and Sánchez, C. (1999). Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación, Reporte técnico del proyecto J084. Mexico, DF: CONABIO – Instituto de Ecología, UNAM. Also available at www.conabio.gob.mx/arboles/introd-J084.htmlGoogle Scholar
Vogelmann, H. W. (1973). Fog precipitation in the cloud forests of Eastern Mexico. BioScience 23: 96–100.CrossRefGoogle Scholar
Weber, M., Günter, S., Aguirre, N., Stimm, B., and Mosandl, R. (2008). Reforestation of abandoned pastures: silvicultural means to accelerate forest recovery and biodiversity. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 447–457. Berlin: Springer-Verlag.Google Scholar
Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation 11: 1825–1843.CrossRefGoogle Scholar
Williams-Linera, G., Manson, R., and Izunza, E. (2002). La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera y Bosques 8: 73–89.CrossRefGoogle Scholar
Williams-Linera, G., Lopez, A. M., and Muñiz, M. A. (2005). Complementariedad y patrones de anidamiento de especies de árboles en el paisaje de bosque de niebla del centro deVeracruz (México). In Sobre diversidad biológica: el significado de las diversidades alfa, beta y gamma, eds. Halffter, G., Soberón, J., Koleff, P., and Melic, A., pp. 153–164. Zaragoza, Mexico: m3m-Monografías Tercer Milenio.Google Scholar
Zimmermann, , B., and Elsenbeer, H. (2008). Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance. Journal of Hydrology 361: 78–95.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×