Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T13:49:39.384Z Has data issue: false hasContentIssue false

2 - General theory of phase transitions

Published online by Cambridge University Press:  05 June 2012

Daniel I. Khomskii
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

The state of different condensed matter systems is characrerized by different quantities: density, symmetry of a crystal, magnetization, electric polarization, etc. Many such states can have a certain ordering. Different types of ordering can be characterized by order parameters.

Examples of order parameters are, for instance: for ferromagnets – the magnetization M; for ferroelectrics – the polarization P; for structural phase transitions – the distortion uαβ, etc. Typically the system is disordered at high temperatures, and certain types of ordering may appear with decreasing temperature. This is clear already from the general expressions for thermodynamic functions, see Chapter 1: at finite temperatures the state of the system is chosen by the condition of the minimum of the corresponding thermodynamic potential, the Helmholtz free energy (1.8) or the Gibbs free energy (1.10), and from those expressions it is clear that with increasing temperature it is favourable to have the highest entropy possible, i.e. a disordered state. But some types of ordering are usually established at lower temperatures, where the entropy does not play such an important role, and the minimum of the energy is reached by establishing that ordering.

The general order parameter η depends on temperature, and in principle also on other external parameters – pressure, magnetic field, etc. Typical cases of the dependence of the order parameter on temperature are shown in Fig. 2.1.

Type
Chapter
Information
Basic Aspects of the Quantum Theory of Solids
Order and Elementary Excitations
, pp. 6 - 30
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×