Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-20T21:22:13.745Z Has data issue: false hasContentIssue false

9 - Electrons with Coulomb interaction

Published online by Cambridge University Press:  05 June 2012

Daniel I. Khomskii
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Using the techniques described in the previous chapter, we can in a unified way discuss properties of the electron gas with Coulomb interaction and consider such effects as optical response, screening, plasmons, etc. In many textbooks these properties are obtained using a variety of methods. The virtue of the Green function method is its universality and, I would say, not much simpler, but standardized form. This method permits one to obtain all the properties mentioned above in the form of one general expression, and it also gives the possibility to generalize the results quite easily to the cases of low-dimensional (1d, 2d) systems, or to take into account the details of the band structure of the material, etc. But more important is the fact that it leads naturally to a number of special interesting consequences which would be rather difficult to obtain with the usual classical methods. In this and in the next two chapters I will demonstrate how to reproduce, using this method, the familiar results such as Debye screening or the plasmon energy, but I will mostly concentrate on less frequently discussed effects which are quite naturally obtained using this technique.

Dielectric function, screening: random phase approximation

We start by studying the form of the effective electron–electron interaction in metals. The ordinary Coulomb interaction V(q) = 4πe2/q2 is modified by the reaction of the electronic system. The first, well-known effect is just the screening of the electric charge. But there are other interesting effects as well.

Type
Chapter
Information
Basic Aspects of the Quantum Theory of Solids
Order and Elementary Excitations
, pp. 159 - 174
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×