Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T17:33:16.411Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2014

Michael Fielding Barnsley
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
SuperFractals , pp. 443 - 448
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arbeiter, Matthias. Random recursive construction of self-similar fractal measures. The noncompact case. Probab. Theory Related Fields 88 (1991), no. 4, 497–520.CrossRefGoogle Scholar
[2] Asai, T.Fractal image generation with iterated function set. Ricoh Technical Report No. 24, November 1998, pp. 6–11.Google Scholar
[3] Barlow, M. T.; Hambly, B. M.Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 5, 531–557.CrossRefGoogle Scholar
[4] Barnsley, M. F.; Demko, S.Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A 399 (1985), no. 1817, 243–275.CrossRefGoogle Scholar
[5] Barnsley, M. F.; Ervin, V.; Hardin, D.; Lancaster, J.Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. USA 83 (1986), no. 7, 1975–1977.CrossRefGoogle ScholarPubMed
[6] Barnsley, Michael F.Fractal functions and interpolation. Constr. Approx. 2 (1986), no. 4, 303–329.CrossRefGoogle Scholar
[7] Barnsley, Michael F.; Elton, J. H.A new class of Markov processes for image encoding. Adv. Appl. Probab. 20 (1988), no. 1, 14–32.CrossRefGoogle Scholar
[8] Barnsley, M. F.; Reuter, L.; Jacquin, A.; Malassenet, F.; Sloan, A.Harnessing chaos for image synthesis. Computer Graphics 22 (1988), 131–140.CrossRefGoogle Scholar
[9] Barnsley, Michael. Fractals Everywhere. Boston MA, Academic Press, 1988.Google Scholar
[10] Barnsley, Michael F.; Elton, John H.; Hardin, Douglas P.Recurrent iterated function systems. Fractal approximation. Constr. Approx. 5 (1989), no. 1, 3–31.CrossRefGoogle Scholar
[11] Barnsley, Michael F.; Harrington, Andrew N.The calculus of fractal interpolation functions. J. Approx. Theory 57 (1989), no. 1, 14–34.CrossRefGoogle Scholar
[12] Barnsley, Michael F.; Hurd, Lyman P.Fractal Image Compression. Illustrations by Louisa F., Anson. Wellesley MA, A. K. Peters, 1993.Google Scholar
[13] Barnsley, Michael F.Fractals Everywhere, second edition. Revised with the assistance of and a foreword by Hawley, Rising, III. Boston MA, Academic Press Professional, 1993.Google Scholar
[14] Barnsley, Michael F.Iterated function systems for lossless data compression. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 33–63. IMA Vol. Math. Appl., vol. 132. New York, Springer, 2002.Google Scholar
[15] Barnsley, Michael F.; Barnsley, Louisa F.Fractal transformations. In The Colours of Infinity: The Beauty and Power of Fractals, pp. 66–81. London, Clear Books, 2004.Google Scholar
[16] Barnsley, Michael; Hutchinson, John; Stenflo, Örjan. A fractal valued random iteration algorithm and fractal hierarchy. Fractals 13 (2005), no. 2, 111–146.CrossRefGoogle Scholar
[17] Barnsley, M. F.Theory and application of fractal tops. Preprint, Australian National University, 2005.CrossRefGoogle Scholar
[18] Barnsley, M. F.Theory and application of fractal tops. In Fractals in Engineering: New Trends in Theory and Applications, J., Lévy-Véhel; E., Lutton (eds.), pp. 3–20. London, Springer-Verlag, 2005.Google Scholar
[19] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, Ö. V-variable fractals. Inpreparation.
[20] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, Ö. V-variable fractals and dimensions. In preparation.
[21] Barnsley, M. F.; Hutchinson, J. E.; Stenflo, Ö. V-variable fractals and correlated random fractals. In preparation.
[22] Berger, Marc A.An Introduction to Probability and Stochastic Processes. Springer Texts in Statistics. New York, Springer-Verlag, 1993.CrossRefGoogle Scholar
[23] Berger, Marcel. Geometry, vols. I and II. Translated from the French by M., Cole and S., Levy. Universitext. Berlin, Springer-Verlag, 1987.Google Scholar
[24] Billingsley, Patrick. Ergodic Theory and Information. New York, London, Sydney, John Wiley & Sons, 1965.Google Scholar
[25] Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J.Geometry. Cambridge, Cambridge University Press, 1999.CrossRefGoogle Scholar
[26] Coxeter, H. S. M.The Real Projective Plane. New York, McGraw-Hill, 1949.Google Scholar
[27] Demko, S.; Hodges, L.; Naylor, B.Constructing fractal objects with iterated function systems. Computer Graphics 19 (1985), 271–278.CrossRefGoogle Scholar
[28] Diaconis, Persi; Freedman, David. Iterated random functions. SIAM Rev. 41 (1999), no. 1, 45–76.CrossRefGoogle Scholar
[29] Dudley, Richard M.Real Analysis and Probability. Pacific Grove CA, Wadsworth & Brooks/Cole Advanced Books & Software, 1989.
[30] Dunford, N.; Schwartz, J. T.Linear Operators. Parti: General Theory, third edition. New York, John Wiley & Sons, 1966.Google Scholar
[31] Edgar, Gerald A.Integral, Probability, and Fractal Measures. New York, Springer, 1998.CrossRefGoogle Scholar
[32] Eisen, Martin. Introduction to Mathematical Probability Theory. Englewood Cliffs NJ, Prentice-Hall, 1969.Google Scholar
[33] Elton, John H.An ergodic theorem for iterated maps. Ergodic Theory Dynam. Systems 7 (1987), no. 4, 481–488.CrossRefGoogle Scholar
[34] Falconer, Kenneth. Random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559–582.CrossRefGoogle Scholar
[35] Falconer, Kenneth. Fractal Geometry. Mathematical Foundations and Applications. Chichester, John Wiley & Sons, 1990.Google Scholar
[36] Fathauer, R.Dr. Fathauer's Encyclopedia of Fractal Tilings. Version 1.0, 2000. http://members.cox.net/fractalenc.Google Scholar
[37] Feller, William. An Introduction to Probability Theory and its Applications, vol. I, third edition. New York, London, Sydney, John Wiley & Sons, 1968.Google Scholar
[38] Fisher, Yuval (ed.) Fractal Image Compression. Theory and Application. New York, Springer-Verlag, 1995.CrossRef
[39] Forte, B.; Mendivil, F.A classical ergodic property for IFS: a simple proof. Ergodic Theory Dynam. Systems 18 (1998), no. 3, 609–611.CrossRefGoogle Scholar
[40] Gardner, Martin. Rep-tiles. The Colossal Book of Mathematics: Classic Puzzles, Paradoxes and Problems. pp. 46–58. New York, London, W. W. Norton & Co., 2001.Google Scholar
[41] Graf, Siegfried. Statistically self-similar fractals. Probab. Theory Related Fields 74 (1987), no. 3, 357–392.CrossRefGoogle Scholar
[42] Grünbaum, Branko; Shephard, G. C.Tilings and Patterns. New York, W. H. Freeman and Co., 1987.Google Scholar
[43] Hambly, B. M.Brownian motion on a random recursive Sierpinski gasket. Ann. Probab. 25 (1997), no. 3, 1059–1102.Google Scholar
[44] Hata, Masayoshi, On the structure of self-similar sets. Japan J. Appl. Math. 2 (1985), no. 2, 381–414.CrossRefGoogle Scholar
[45] Hénon, M.A two-dimensional mapping with a strange attractor. Comm. Math. Phys. 50 (1976), no. 1, 69–77.CrossRefGoogle Scholar
[46] Hoggar, S. G.Mathematics for Computer Graphics. Cambridge, Cambridge University Press, 1992.Google Scholar
[47] Horn, Alistair N.IFSs and the interactive design of tiling structures. In Fractals and Chaos, pp. 119–144. New York, Springer, 1991.Google Scholar
[48] Hutchinson, John E.Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.CrossRefGoogle Scholar
[49] Hutchinson, John E.; Rüschendorf, Ludger. Random fractal measures via the contraction method. Indiana Univ. Math. J. 47 (1998), no. 2, 471–487.CrossRefGoogle Scholar
[50] Hutchinson, John E.Deterministic and random fractals. In Complex Systems, pp. 127–166, Cambridge, Cambridge University Press, 2000.Google Scholar
[51] Hutchinson, John E.; Rüschendorf, Ludger. Selfsimilar fractals and selfsimilar random fractals. In Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), pp. 109–123. Progress in Probability, vol. 46. Basel, Birkhauser, 2000.Google Scholar
[52] Hutchinson, John E.; Rüschendorf, Ludger. Random fractals and probability metrics. Adv. in Appl. Probab. 32 (2000), 925–947.CrossRefGoogle Scholar
[53] Jacquin, Arnaud. Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans. Image Proc. 1 (1992), 18–30.CrossRefGoogle ScholarPubMed
[54] Kaandorp, Jaap A.Fractal modelling. Growth and Form in Biology. With a forward by P., Prusinkiewicz. Berlin, Springer-Verlag, 1994.CrossRefGoogle Scholar
[55] Kaijser, Thomas. On a new contraction condition for random systems with complete connections. Rev. Roumaine Math. Pures Appl. 26 (1981), no. 8, 1075–1117.Google Scholar
[56] Katok, Anatole; Hasselblatt, Boris. Introduction to the modern theory of dynamical systems. With a supplementary chapter by Anatole, Katok and Leonardo, Mendoza. In Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge, Cambridge University Press, 1995.Google Scholar
[57] Keeton, W. T.; Gould, J. L.; Gould, C. G.Biological Science, fifth edition. New York, London, W. W. Norton & Co., 1993.Google Scholar
[58] Kieninger, B.Iterated Function Systems on Compact Hausdorff Spaces. Aachen, Shaker-Verlag, 2002.Google Scholar
[59] Kifer, Yuri. Fractals via random iterated function systems and random geometric constructions. In Fractal Geometry and Stochastics (Finsbergen, 1994), pp. 145–164. Progress in Probability, vol. 37. Basel, Birkhäuser, 1995.Google Scholar
[60] Kunze, H.; Vrscay, E.Inverse problems for ODEs using the Picard contraction mapping. Inverse Problems 15 (1999).CrossRefGoogle Scholar
[61] Lasota, A.; Yorke, James A.On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481–488.CrossRefGoogle Scholar
[62] Lu, N.Fractal Imaging. San Diego, Academic Press, 1997.Google Scholar
[63] Mandelbrot, Benoit B.Fractals: Form, Chance, and Dimension. Translated from the French. Revised edition. San Francisco, W. H. Freeman and Co., 1977.Google Scholar
[64] Mandelbrot, Benoit B.The Fractal Geometry of Nature. San Francisco, W. H. Freeman, 1983.Google Scholar
[65] Mandelbrot, Benoit B.A multifractal walk down Wall Street. Scientific American, February 1999, 70–73.Google Scholar
[66] Massopust, Peter R.Fractal Functions, Fractal Surfaces, and Wavelets. San Diego CA, Academic Press, 1994.Google Scholar
[67] Mauldin, R. Daniel; Williams, S. C.Random recursive constructions: asymptotic geometrical and topological properties. Trans. Amer. Math. Soc. 295 (1986), no. 1, 325–346.CrossRefGoogle Scholar
[68] Mauldin, R. Daniel; Williams, S. C.Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988), no. 2, 811–829.CrossRefGoogle Scholar
[69] McGhehee, Richard. Attractors for closed relations on compact Hausdorff spaces. Indiana Univ. Math. J. 41 (1992), no. 4, 1165–1209.Google Scholar
[70] Mendelson, Bert. Introduction to Topology, British edition. London, Glasgow, Blackie & Son, 1963.Google Scholar
[71] Mochizuki, S.; Horie, D.; Cai, D.Stealing Autumn Color. ACM SIGGRAPH poster, 2005. See http://mochi.jpn.org/temp/mochipdf.zip.CrossRefGoogle Scholar
[72] Moran, P. A. P.Additive functions of intervals and Hausdorff measure. Proc. Cambridge Philos. Soc. 42 (1946), 15–23.CrossRefGoogle Scholar
[73] Mumford, David; Series, Caroline; Wright, David. Indra's Pearls. The Vision of Felix Klein. New York, Cambridge University Press, 2002.CrossRefGoogle Scholar
[74] Navascués, M. A.Fractal polynomial interpolation. Z. Anal. Anwendungen 24 (2005), no. 2, 401–418.Google Scholar
[75] Nitecki, Zbigniew H.Topological entropy and the preimage structure of maps. Real Anal. Exchange 29 (2003/2004), no. 1, 9–41.Google Scholar
[76] Onicescu, O.; Mihok, G.Sur les chaînes de variables statistiques. Bull. Sci. Math. de France 59 (1935), 174–192.Google Scholar
[77] Parry, William. Symbolic dynamics and transformations of the unit interval. Trans. Amer. Math. Soc. 122 (1966), 368–378.CrossRefGoogle Scholar
[78] Peitgen, H.-O.; Richter, P. H.The Beauty of Fractals. Images of Complex Dynamical Systems. Berlin, Springer-Verlag, 1986.Google Scholar
[79] Peruggia, Mario. Discrete Iterated Function Systems. Wellesley MA, A. K. Peters, 1993.Google Scholar
[80] Prusinkiewicz, Przemyslaw; Lindenmayer, Aristid. The Algorithmic Beauty of Plants. With the collaboration of James S., Hanan, F. David, Fracchia, Deborah R., Fowler, Martin J. M., de Boer and Lynn, Mercer. The Virtual Laboratory. New York, Springer-Verlag, 1990.CrossRefGoogle Scholar
[81] Rachev, Svetlozar T.Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Statistics. Chichester, John Wiley & Sons, 1991.Google Scholar
[82] Rényi, A.Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.CrossRefGoogle Scholar
[83] Ruelle, David. Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34 (1976), no. 3, 231–242.CrossRefGoogle Scholar
[84] Sagan, Hans. Space-Filling Curves. Universitext. New York, Springer-Verlag, 1994.CrossRefGoogle Scholar
[85] Scealy, R. V-Variable Fractal Interpolation. In preparation.
[86] Schattschneider, D.M. C. Escher: Visions of Symmetry, second edition. New York, Harry N. Abrams, 2004.Google Scholar
[87] Scientific Workplace 4.0.MacKichan Software, 2002.
[88] Shields, Paul C.The Ergodic Theory of Discrete Sample Paths. Graduate Studies in Mathematics, vol. 13. Providence RI, American Mathematical Society, 1996.Google Scholar
[89] Solomyak, Boris. Dynamics of self-similar tilings. Ergodic Theory and Dynam. Systems 17 (1997), no. 3, 695–738. Corrections in Ergodic Theory and Dynam. Systems 19 (1999), no. 6, 1685.CrossRefGoogle Scholar
[90] Stenflo, Örjan. Markov chains in random environments and random iterated function systems. Trans. Amer. Math. Soc. 353 (2001), no. 9, 3547–3562.CrossRefGoogle Scholar
[91] Stenflo, Örjan. Uniqueness of invariant measures for place-dependent random iterations of functions. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 13–32. IMA Vol. Math. Appl. New York, Springer-Verlag, 2002.Google Scholar
[92] Stewart, Ian; Clarke, Arthur C.; Mandelbrot, Benoît; et al. In The Colours of Infinity: The Beauty and Power of Fractals. London, Clear Books, 2004.Google Scholar
[93] Szoplik, T. (ed.) Selected Papers on Morphological Image Processing: Principles and Optoelectronic Implementations. Vol. MS 127, SPIE. Optical Engineering Press, 1996.
[94] The history of mathematics. In The New Encyclopaedia Britannica, fifteenth edition, vol. II, pp. 656–657. Chicago, London, 1979.
[95] Tosan, Eric; Excoffier, Thierry; Rondet-Mignotte, Martine. Création de formes et de couleurs avec les IFS. Preprint 2005. Université Claude Bernard, France.Google Scholar
[96] Tricot, Claude. Curves and Fractal Dimension. With a foreword by Michel Mendes, France. Translated from the 1993 French original. New York, Springer-Verlag, 1995.CrossRefGoogle Scholar
[97] Vrscay, Edward R.From fractal image compression to fractal-based methods in mathematics. In Fractals in Multimedia (Minneapolis MN, 2001), pp. 65–106. IMA Vol. Math. Appl., vol. 132. New York, Springer, 2002.Google Scholar
[98] Werner, Ivan. Ergodic theorem for contractive Markov systems. Nonlinearity 17 (2004), no. 6, 2303–2313.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Michael Fielding Barnsley, Australian National University, Canberra
  • Book: SuperFractals
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107590168.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Michael Fielding Barnsley, Australian National University, Canberra
  • Book: SuperFractals
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107590168.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Michael Fielding Barnsley, Australian National University, Canberra
  • Book: SuperFractals
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107590168.007
Available formats
×