Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T11:13:42.933Z Has data issue: false hasContentIssue false

15 - Numerical Solution Techniques

Published online by Cambridge University Press:  05 February 2013

Arvid Naess
Affiliation:
Norwegian University of Science and Technology, Trondheim
Torgeir Moan
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

We have seen that when the equations of motion of an offshore facility can be modeled as linear, there are sometimes analytical methods available that allow us to calculate the statistical properties of the response. In general, this possibility is lost as soon as nonlinear elements enter the dynamic model. Under such circumstances, the most general and practical option available to obtain statistical information about the response process is to perform a Monte Carlo simulation, which consists of three steps:

  1. A sample of load time histories is generated.

  2. For each load time history, the equations of motion are solved numerically by a time-stepping method to produce a corresponding sample of response time histories.

  3. For the sample of response time histories, statistical techniques are used to derive estimates of the requested statistics. The desired accuracy of these estimates will determine the necessary sample size.

The first step is discussed in the previous section. Here, we discuss the second step. To simplify this discussion, it is expedient to start with the 1DOF case. The equation of motion is then written in the form

subject to the initial conditions

The nonlinear function f(u, u) may contain both nonlinear damping terms and nonlinear restoring force terms. p(t) is an external (deterministic) applied force.

The numerical solution of Eq. (15.1) is achieved by a recursive integration procedure in time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Numerical Solution Techniques
  • Arvid Naess, Norwegian University of Science and Technology, Trondheim, Torgeir Moan, Norwegian University of Science and Technology, Trondheim
  • Book: Stochastic Dynamics of Marine Structures
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139021364.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Numerical Solution Techniques
  • Arvid Naess, Norwegian University of Science and Technology, Trondheim, Torgeir Moan, Norwegian University of Science and Technology, Trondheim
  • Book: Stochastic Dynamics of Marine Structures
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139021364.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Numerical Solution Techniques
  • Arvid Naess, Norwegian University of Science and Technology, Trondheim, Torgeir Moan, Norwegian University of Science and Technology, Trondheim
  • Book: Stochastic Dynamics of Marine Structures
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139021364.016
Available formats
×