Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-09T16:21:31.187Z Has data issue: false hasContentIssue false

9 - Normal modes

Published online by Cambridge University Press:  05 June 2012

K. F. Riley
Affiliation:
University of Cambridge
M. P. Hobson
Affiliation:
University of Cambridge
Get access

Summary

Any student of the physical sciences will encounter the subject of oscillations on many occasions and in a wide variety of circumstances, for example the voltage and current oscillations in an electric circuit, the vibrations of a mechanical structure and the internal motions of molecules. The matrices studied in the previous chapter provide a particularly simple way to approach what may appear, at first glance, to be difficult physical problems.

We will consider only systems for which a position-dependent potential exists, i.e., the potential energy of the system in any particular configuration depends upon the coordinates of the configuration, which need not be be lengths, however; the potential must not depend upon the time derivatives (generalised velocities) of these coordinates. So, for example, the potential —qv. A used in the Lagrangian description of a charged particle in an electromagnetic field is excluded. A further restriction that we place is that the potential has a local minimum at the equilibrium point; physically, this is a necessary and sufficient condition for stable equilibrium. By suitably defining the origin of the potential, we may take its value at the equilibrium point as zero.

We denote the coordinates chosen to describe a configuration of the system by qi, i = 1, 2, …, N. The qi need not be distances; some could be angles, for example.

Type
Chapter
Information
Mathematical Methods for Physics and Engineering
A Comprehensive Guide
, pp. 322 - 339
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Normal modes
  • K. F. Riley, University of Cambridge, M. P. Hobson, University of Cambridge, S. J. Bence
  • Book: Mathematical Methods for Physics and Engineering
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164979.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Normal modes
  • K. F. Riley, University of Cambridge, M. P. Hobson, University of Cambridge, S. J. Bence
  • Book: Mathematical Methods for Physics and Engineering
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164979.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Normal modes
  • K. F. Riley, University of Cambridge, M. P. Hobson, University of Cambridge, S. J. Bence
  • Book: Mathematical Methods for Physics and Engineering
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164979.011
Available formats
×