Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-09T07:02:44.333Z Has data issue: false hasContentIssue false

25 - Representation theory

Published online by Cambridge University Press:  05 June 2012

K. F. Riley
Affiliation:
University of Cambridge
M. P. Hobson
Affiliation:
University of Cambridge
Get access

Summary

As indicated at the start of the previous chapter, significant conclusions can often be drawn about a physical system simply from the study of its symmetry properties. That chapter was devoted to setting up a formal mathematical basis, group theory, with which to describe and classify such properties; the current chapter shows how to implement the consequences of the resulting classifications and obtain concrete physical conclusions about the system under study. The connection between the two chapters is akin to that between working with coordinate-free vectors, each denoted by a single symbol, and working with a coordinate system in which the same vectors are expressed in terms of components.

The ‘coordinate systems’ that we will choose will be ones that are expressed in terms of matrices; it will be clear that ordinary numbers would not be sufficient, as they make no provision for any non-commutation amongst the elements of a group. Thus, in this chapter the group elements will be represented by matrices that have the same commutation relations as the members of the group, whatever the group's original nature (symmetry operations, functional forms, matrices, permutations, etc.). For some abstract groups it is difficult to give a written description of the elements and their properties without recourse to such representations. Most of our applications will be concerned with representations of the groups that consist of the symmetry operations on molecules containing two or more identical atoms.

Type
Chapter
Information
Mathematical Methods for Physics and Engineering
A Comprehensive Guide
, pp. 918 - 960
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×