Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T10:55:31.287Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2013

David Moore
Affiliation:
University of Manchester
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpermann, T., Rüdel, K., Rüger, R., et al. (2010). Polymersomes containing iron sulfide (FeS) as primordial cell model for the investigation of energy providing redox reactions. Origins of Life and Evolution of Biospheres, 41: 103–119. DOI: .CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. (2008). The Borealis basin and the origin of the martian crustal dichotomy. Nature, 453: 1212–1215. DOI: .CrossRefGoogle ScholarPubMed
Arnaud-Haond, S., Duarte, C. M., Diaz-Almela, E., et al. (2012). Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrassPosidonia oceanica. PLoS ONE, 7: e30454. DOI: .Google ScholarPubMed
Arrhenius, S. (1908). Worlds in the Making: The Evolution of the Universe (translated by Borns, H). New York: Harper & Row. URL: .Google Scholar
Atkins, J. F., Gesteland, R. F. & Cech, T. R. (2010). RNA Worlds: From Life’s Origins to Diversity in Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. ISBN: 0879699469, 9780879699468.Google Scholar
Atlas of the Human Journey (2011). The Genographic Project of the National Geographic Society. URL: .
Bahadur, K., Ranganayaki, S. & Santamaria, L. (1958). Photosynthesis of amino-acids from paraformaldehyde involving the fixation of nitrogen in the presence of colloidal molybdenum oxide as catalyst. Nature, 182: 1668. DOI: .CrossRefGoogle ScholarPubMed
Baltscheffsky, H., Blomberg, C., Liljenström, H., Lindahl, B. I. B. & Århem, P. (1997). On the origin and evolution of life: an introduction. Journal of Theoretical Biology, 187: 453–459. DOI: .CrossRefGoogle Scholar
Baross, J. A. & Hoffman, S. E. (1985). Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life, 15: 327–345. DOI: .Google Scholar
Belbruno, E. & Gott, J. R. (2005). Where did the moon come from?The Astronomical Journal, 129: 1724–1745. DOI: .CrossRefGoogle Scholar
Belloche, A., Garrod, R. T., Müller, H. S. P., et al. (2009). Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N). Astronomy & Astrophysics, 499: 215–232. DOI: .CrossRefGoogle Scholar
Benner, S. A. (2010). Defining life. Astrobiology, 10: 1021–1030. DOI: .CrossRefGoogle ScholarPubMed
Bernstein, M. P. (2006). Prebiotic materials from on and off the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1689–1702. DOI: .CrossRefGoogle ScholarPubMed
Bills, B. G. & Ray, R. D. (1999). Lunar orbital evolution: a synthesis of recent results. Geophysical Research Letters, 26: 3045–3048. DOI: .CrossRefGoogle Scholar
Blackwell, M. (2000). Terrestrial life – fungal from the start?Science, 289: 1884–1885. DOI: .CrossRefGoogle ScholarPubMed
Blank, J. G., Miller, G. H., Ahrens, M. J. & Winans, R. E. (2001). Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Origins of Life and Evolution of the Biosphere, 31: 15–51. DOI: .CrossRefGoogle ScholarPubMed
Boal, D. & Ng, R. (2010). Shape analysis of filamentous Precambrian microfossils and modern cyanobacteria. Paleobiology, 36: 555–572. DOI: .CrossRefGoogle Scholar
Bobe, R. & Behrensmeyer, A. K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 399–420. DOI: .CrossRefGoogle Scholar
Boyce, C. K., Hotton, C. L., Fogel, M. L., et al. (2007). Devonian landscape heterogeneity recorded by a giant fungus. Geology, 35: 399–402. DOI: .CrossRefGoogle Scholar
Bracker, C. E. (1968). The ultrastructure and development of sporangia inGilbertella persicaria. Mycologia, 60: 1016–1067. DOI: .CrossRefGoogle Scholar
Breaker, R. R. (2011). Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology, 3: a003566. DOI: .Google Scholar
Brinkmann, H. & Philippe, H. (1999). Archaea sister-group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Molecular Biology and Evolution, 16: 817–825. URL: .CrossRefGoogle ScholarPubMed
Buss, L. W. (1983). Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences of the United States of America, 80: 1387–1391. Stable URL: .CrossRefGoogle Scholar
Buss, L. W. (1987). The Evolution of Individuality. Princeton, NJ: Princeton University Press. ISBN: 0691084696, 9780691084695.Google Scholar
Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26: 386–404. DOI: .2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. (2005). Probable Proterozoic fungi. Paleobiology, 31: 165–182. DOI: .2.0.CO;2>CrossRefGoogle Scholar
Cady, S. L. (2001). Ancient microbes, extreme environments, and the origin of life. Advances in Applied Microbiology, 50: 3–35. DOI: .CrossRefGoogle Scholar
Cairns-Smith, A. G. (1982). Genetic Takeover and the Mineral Origins of Life. Cambridge, UK: Cambridge University Press. ISBN: 0521346827, 9780521346825.Google Scholar
Callahan, M. P., Smith, K. E., Cleaves, H. J., et al. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 108: 13995–13998. DOI: .CrossRefGoogle ScholarPubMed
Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. (2010). Detection of C60 and C70 in a young planetary nebula. Science, 329: 1180. DOI: .CrossRefGoogle Scholar
Canfield, D. E., Rosing, M. T. & Bjerrum, C. (2006). Early anaerobic metabolisms. Philosophical Transactions of the Royal Society of London, Series B, 361: 1819–1836. DOI: .CrossRefGoogle ScholarPubMed
Carballeira, N. M., Reyes, M., Sostre, A., et al. (1997). Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. Journal of Bacteriology, 179: 2766–2768. URL: .CrossRefGoogle ScholarPubMed
Carny, O. & Gazit, E. (2005). A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB Journal (The Journal of the Federation of American Societies for Experimental Biology), 19: 1051–1055. DOI: .CrossRefGoogle ScholarPubMed
Casadevall, A. (2005). Fungal virulence, vertebrate endothermy, and dinosaur extinction: is there a connection?Fungal Genetics and Biology, 42: 98–106. DOI: .CrossRefGoogle Scholar
Cavalier-Smith, T. (2006). Cell evolution and Earth history: stasis and revolution. Philosophical Transactions of the Royal Society of London, Series B, 361: 969–1006. DOI: .CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (2010a). Deep phylogeny, ancestral groups and the four ages of life. Philosophical Transactions of the Royal Society of London, Series B, 365: 111–132. DOI: .CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (2010b). Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biology Letters, 6: 342–345. DOI: .CrossRefGoogle ScholarPubMed
Chyba, C. & Sagan, C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature, 355: 125–132. DOI: .CrossRefGoogle ScholarPubMed
Chyba, C., Brookshaw, T. P. & Sagan, C. (1990). Cometary delivery of organic molecules to the early Earth. Science, 249: 366–373. DOI: .CrossRefGoogle ScholarPubMed
Cockell, C., Corfield, R., Edwards, N. & Harris, N. (2008). An Introduction to the Earth-Life System. Cambridge and Milton Keynes: Cambridge University Press in association with the Open University. ISBN 9780521729536.Google Scholar
Cockell, C. S. (2004). Impact-shocked rocks: insights into Archean and extraterrestrial microbial habitats (and sites for prebiotic chemistry?). Advances in Space Research, 33: 1231–1235. DOI: .CrossRefGoogle Scholar
Cody, G. D., Boctor, N. Z., Filley, T. R., et al. (2000). Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science, 289: 1337–1340. DOI: .CrossRefGoogle ScholarPubMed
Conway Morris, S. (2003). Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge, UK: Cambridge University Press. ISBN: 0521603250, 9780521603256.CrossRefGoogle Scholar
Crick, F. H. & Orgel, L. E. (1973). Directed panspermia. Icarus, 19: 341–348. DOI: .CrossRefGoogle Scholar
Darwin, E. & Litchfield, H. (1915). Emma Darwin V2: A Century of Family Letters, 1792–1896. London: John Murray. Republished, 2010, by Kessinger Publishing, ISBN: 1166051900, 9781166051907 [and see: ].Google Scholar
Darwin, F. (ed.) (1887). The Life and Letters of Charles Darwin, Including an Autobiographical Chapter, Edited by his Son, Francis Darwin in Three Volumes. Volume 3 (see p. 18). London: John Murray. [and see: ].Google Scholar
Davies, P. (2006). The Origin of Life. Harmondsworth, UK: Penguin. ISBN: 978–0141013022.Google Scholar
Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. London: W. W. Norton & Co. ISBN-10: 0393022161, ISBN-13: 978–0393022162.Google Scholar
Dawkins, R. (2006). The God Delusion. London: Transworld Publishers. ISBN-10: 055277331X, ISBN-13: 9780552773317.Google Scholar
Deamer, D. W. (1985). Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature, 317: 792–794. DOI: .CrossRefGoogle Scholar
Deamer, D. W. & Weber, A. L. (2010). Bioenergetics and life’s origins. Cold Spring Harbor Perspectives in Biology, 2: a004929. DOI: .CrossRefGoogle ScholarPubMed
Deamer, D. W., Dworkin, J. P., Sandford, S. A., Bernstein, M. P. & Allamandola, L. J. (2002). The first cell membranes. Astrobiology, 2: 371–381. DOI: .CrossRefGoogle ScholarPubMed
Derenne, S., Robert, F., Skrzypczak-Bonduelle, A., et al. (2008). Molecular evidence for life in the 3.5 billion year old Warrawoona Chert. Earth and Planetary Science Letters, 272: 476–480. DOI: .CrossRefGoogle Scholar
Dobson, C. M., Ellison, G. B., Tuck, A. F. & Vaida, V. (2000). Atmospheric aerosols. Proceedings of the National Academy of Sciences of the United States of America, 97: 11864–11868. DOI: .CrossRefGoogle ScholarPubMed
Dobson, D. P. & Brodholt, J. P. (2005). Subducted banded iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature, 434: 371–374. DOI: .CrossRefGoogle ScholarPubMed
Donaldson, D. J., Tervahattu, H., Tuck, A. F. & Vaida, V. (2004). Organic aerosols and the origin of life: an hypothesis. Origins of Life and Evolution of the Biosphere, 34: 57–67. DOI: .CrossRefGoogle ScholarPubMed
Donaldson, D. J., Tuck, A. F. & Vaida, V. (2002). The asymmetry of organic aerosol fission and prebiotic chemistry. Origins of Life and Evolution of Biospheres, 32: 237–245. DOI: .CrossRefGoogle ScholarPubMed
Dörfelt, H. & Schmidt, A. R. (2005). A fossil Aspergillus from Baltic amber. Mycological Research, 109: 956–960. DOI: .CrossRefGoogle ScholarPubMed
Dyson, F. J. (1999). Origins of Life. Cambridge, UK: Cambridge University Press. ISBN: 0521626684, 9780521626682.CrossRefGoogle Scholar
Earth Impact Database (2011). University of New Brunswick, Fredericton, New Brunswick, Canada: Planetary and Space Science Centre. URL: .
Ehrenfreund, P. & Cami, J. (2010). Cosmic carbon chemistry: from the interstellar medium to the early Earth. Cold Spring Harbor Perspectives in Biology, 2:(12): a002097. DOI: .CrossRefGoogle ScholarPubMed
Ehrenfreund, P. & Foing, B. H. (2010). Fullerenes and cosmic carbon. Science, 329: 1159–1160. DOI: .CrossRefGoogle ScholarPubMed
Ehrenfreund, P., Charnley, S. B. & Botta, O. (2005). A voyage from dark clouds to the early Earth. In Astrophysics of Life (Proceedings of the Space Telescope Science Institute Symposium held in Baltimore, Maryland, May 6–9, 2002), ed. Livio, M., Reid, I. N. & Sparks, W. B., pp. 1–22. Cambridge, UK: Cambridge University Press.Google Scholar
Ehrenfreund, P., Irvine, W., Becker, L., et al.& ISSI-Team ‘Prebiotic matter in space’ (2002). Astrophysical and astrochemical insights into the origin of life. Reports on Progress in Physics, 65: 1427–1487. DOI: .CrossRefGoogle Scholar
Eichler, J. & Adams, M. W. W. (2005). Posttranslational protein modification in Archaea. Microbiology and Molecular Biology Reviews, 69: 393–425. DOI: .CrossRefGoogle ScholarPubMed
Eigen, M. & Schuster, P. (1977). The hypercycle: a principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften, 64: 541–565. DOI: .CrossRefGoogle Scholar
Eigen, M. & Schuster, P. (1978a). The hypercycle: a principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften, 65: 7–41. DOI: .CrossRefGoogle Scholar
Eigen, M. & Schuster, P. (1978b). The hypercycle: a principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften, 65: 341–369. DOI: .CrossRefGoogle Scholar
Farley, K. A., Montanari, A., Shoemaker, E. M. & Shoemaker, C. S. (1998). Geochemical evidence for a comet shower in the late Eocene. Science, 280: 1250–1253. DOI: .CrossRefGoogle ScholarPubMed
Fenchel, T. (2002). The Origin & Early Evolution of Life. Oxford, UK: Oxford University Press. ISBN: 0198525338, 9780198525332.Google Scholar
Ferguson, B. A., Dreisbach, T. A., Parks, C. G., Filip, G. M. & Schmitt, C. L. (2003). Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Canadian Journal of Forest Research, 33: 612–623. DOI: .CrossRefGoogle Scholar
Finlayson, C., Pacheco, F. G., Rodríguez-Vidal, J., et al. (2006). Late survival of Neanderthals at the southernmost extreme of Europe. Nature, 443: 850–853. DOI: .CrossRefGoogle ScholarPubMed
Flemming, H. -C. & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8: 623–633. DOI: .CrossRefGoogle ScholarPubMed
Flemming, H. -C., Wingender, J. & Szewzyk, U. (2011). Biofilm Perspectives. Volume 5 of Springer Series on Biofilms. Berlin and Heidelberg: Springer-Verlag GmbH & Co. KG. ISBN: 3642199399, 9783642199394.Google Scholar
Follmann, H. & Brownson, C. (2009). Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften, 96: 1265–1292. DOI: .CrossRefGoogle ScholarPubMed
Fox, S. W. (1980). Life from an orderly cosmos. Naturwissenschaften, 67: 576–581. DOI: .CrossRefGoogle ScholarPubMed
Fraser, C. L. & Folsome, C. E. (1975). Exponential kinetics of formation or organic microstructures. Origins of Life and Evolution of Biospheres, 6: 429–433. DOI: .CrossRefGoogle ScholarPubMed
Gánti, T. (2003). The Principles of Life (with a commentary by James Griesemer & Eörs Szathmáry). Oxford, UK: Oxford University Press. ISBN: 0198507267, 9780198507260.CrossRefGoogle Scholar
García-Hernández, D. A., Manchado, A., García-Lario, P., et al. (2010). Formation of fullerenes in H-containing planetary nebulae. Astrophysical Journal Letters, 724: L39–L43. DOI: .CrossRefGoogle Scholar
Gilbert, W. (1986). The RNA world. Nature, 319: 618. DOI: .CrossRefGoogle Scholar
Glass, N. L., Rasmussen, C., Roca, M. G. & Read, N. D. (2004). Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 12: 135–141. DOI: .CrossRefGoogle ScholarPubMed
Glavin, D. P. & Dworkin, J. P. (2009). Enrichment in L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proceedings of the National Academy of Sciences of the United States of America, 106: 5487–5492. DOI: .CrossRefGoogle ScholarPubMed
Gogarten-Boekels, M., Hilario, E. & Gogarten, P. (1995). The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains. Origins of Life and Evolution of the Biosphere, 25: 251–264. DOI: .CrossRefGoogle ScholarPubMed
Gold, T. (1992). The deep, hot biosphere. Proceedings of the National Academy of Sciences of the United States of America, 89: 6045–6049. URL: .CrossRefGoogle ScholarPubMed
Goldreich, P. (1966). History of the Lunar orbit. Reviews of Geophysics, 4: 411–439. DOI: .CrossRefGoogle Scholar
Green, R. E., Krause, J., Briggs, A. W., et al. (2010). A draft sequence of the Neandertal genome. Science, 328: 710–722. DOI: .CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1929). The origin of life. Rationalist Annual, 3: 3–10.Google Scholar
Harding, M. W., Marques, L. L. R., Howard, R. J. & Olson, M. E. (2009). Can filamentous fungi form biofilms?Trends in Microbiology, 17: 475–480. DOI: .CrossRefGoogle ScholarPubMed
Hartman, H. (1975). Speculations on the origin and evolution of metabolism. Journal of Molecular Evolution, 4: 359–370. DOI: .CrossRefGoogle ScholarPubMed
Hartmann, W. K. & Davis, D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24: 504–515. DOI: .CrossRefGoogle Scholar
Hazen, R. M. (2005). Genesis: The Scientific Quest for Life’s Origin. Washington, DC: Joseph Henry Press. ISBN: 0309094321, 9780309094320.Google Scholar
Hereward, F. V. & Moore, D. (1979). Polymorphic variation in the structure of aerial sclerotia of Coprinus cinereus. Journal of General Microbiology, 113: 13–18. DOI: .CrossRefGoogle Scholar
Hibbett, D. S., Grimaldi, D. & Donoghue, M. J. (1995). Cretaceous mushrooms in amber. Nature, 377: 487. DOI: .CrossRefGoogle Scholar
Hobbie, E. A. & Boyce, C. K. (2010). Carbon sources for the Palaeozoic giant fungus Prototaxites inferred from modern analogues. Proceedings of the Royal Society, Series B, 277: 2149–2156. DOI: .CrossRefGoogle ScholarPubMed
Horneck, G. (1996). Exobiology. In Biological and Medical Research in Space: An Overview of Life Sciences Research in Microgravity, ed. Moore, D., Bie, P. & Oser, H., Chapter 7. Berlin, Heidelberg & New York: Springer-Verlag. ISBN: 354060636X, 9783540606369.Google Scholar
Horneck, G. (1999). European activities in exobiology in Earth orbit: results and perspectives. Advances in Space Research, 23: 381–386. DOI: .CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N. C. (1982). Proofs that Life is Cosmic. Colombo, Sri Lanka: Colombo Government Press. URL: .Google Scholar
Huber, C. & Wächtershäuser, G. (1997). Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science, 276: 245–247. DOI: .CrossRefGoogle ScholarPubMed
Hueber, F. M. (2001). Rotted wood-alga-fungus: the history and life of Prototaxites Dawson 1859. Review of Paleobotany and Palynology, 116: 123–148. DOI: .CrossRefGoogle Scholar
Hull, D. L. (1988). Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. Chicago, IL: University of Chicago Press. ISBN: 0226360512, 9780226360515.CrossRefGoogle Scholar
Jacobs, B. F. (2004). Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society of London, Series B, 359: 1573–1583. DOI: .CrossRefGoogle ScholarPubMed
Javaux, E. J., Knoll, A. H. & Walter, M. R. (2001). Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 412: 66–69. DOI: .CrossRefGoogle ScholarPubMed
Johnson, A. P., Cleaves, H. J., Dworkin, J. P., et al. (2008). The Miller volcanic spark discharge experiment. Science, 322: 404. DOI: .CrossRefGoogle ScholarPubMed
Jutzi, M. & Asphaug, E. (2011). Forming the lunar farside highlands by accretion of a companion moon. Nature, 476: 69–72. DOI: .CrossRefGoogle ScholarPubMed
Karatan, E. & Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 73: 310–347. DOI: .CrossRefGoogle ScholarPubMed
Kasting, J. F. (1993). Earth’s early atmosphere. Science, 259: 920–926. DOI: .CrossRefGoogle ScholarPubMed
Kasting, J. F. & Howard, M. T. (2006). Atmospheric composition and climate on the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1733–1742. DOI: .CrossRefGoogle ScholarPubMed
Keeling, P. J., Burger, G., Durnford, D. G., et al. (2005). The tree of eukaryotes. Trends in Ecology and Evolution, 20: 670–676. DOI: .CrossRefGoogle ScholarPubMed
Kelley, D. S., Carson, J. A., Blackman, D. K., et al. & the At3–60 Shipboard Party (2001). An off-axis hydrothermal vent field discovered near the Mid-Atlantic Ridge at 30°N. Nature, 412: 145–149. DOI: .CrossRefGoogle Scholar
Kennett, D. J., Kennett, J. P., West, A., et al. (2009). Nanodiamonds in the Younger Dryas boundary sediment layer. Science, 323: 94. DOI: .CrossRefGoogle ScholarPubMed
Koshland, D. E. (2002). The seven pillars of life. Science, 295: 2215–2216. DOI: .CrossRefGoogle ScholarPubMed
Kwok, S. (2004). The synthesis of organic and inorganic compounds in evolved stars. Nature, 430: 985–991. DOI: .CrossRefGoogle ScholarPubMed
Lane, N. (2010). Life Ascending: The Ten Great Inventions of Evolution. London: Profile Books Ltd. ISBN: 9781861978189.Google Scholar
Lane, N., Allen, J. F. & Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32: 271–280. DOI: .CrossRefGoogle ScholarPubMed
Lasaga, A. C., Holland, H. D. & Dwyer, M. J. (1971). Primordial oil slick. Science, 174: 53–55. DOI: .CrossRefGoogle ScholarPubMed
Lazcano, A. (2010). Which way to life?Origins of Life and Evolution of Biospheres, 40: 161–167. DOI: .CrossRefGoogle ScholarPubMed
Lazcano, A. & Miller, S. L. (1996). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell, 85: 793–798. DOI: .CrossRefGoogle Scholar
Lessie, P. E. & Lovett, J. S. (1968). Ultrastructural changes during sporangium formation and zoospore differentiation in Blastocladiella emersonii. American Journal of Botany, 55: 220–236. URL: .CrossRefGoogle ScholarPubMed
Liu, Z., Pagani, M., Zinniker, D., et al. (2009). Global cooling during the Eocene-Oligocene climate transition. Science, 323: 1187–1190. DOI: .CrossRefGoogle ScholarPubMed
Lopez, P., Forterre, P. & Philippe, H. (1999). The root of the tree of life in the light of the covarion model. Journal of Molecular Evolution, 49: 496–508. DOI: .CrossRefGoogle ScholarPubMed
Luisi, P. L. (1998). About various definitions of life. Origins of Life and Evolution of the Biosphere, 28: 613–622. DOI: .CrossRefGoogle ScholarPubMed
Luisi, P. L. (2006). The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge, UK: Cambridge University Press. ISBN: 0521821177, 9780521821179.CrossRefGoogle Scholar
Lunine, J. I. (2006). Physical conditions on the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1721–1731. DOI: .CrossRefGoogle ScholarPubMed
Lurquin, P. F. (2003). The Origins of Life and the Universe. New York: Columbia University Press. ISBN: 0231126557, 9780231126557.CrossRefGoogle Scholar
Mackie, R. I. (2002). Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative & Comparative Biology, 42: 319–326. DOI: .CrossRefGoogle ScholarPubMed
Maher, K. A. & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331: 612–614. DOI: .CrossRefGoogle ScholarPubMed
Margulis, L. (2004). Serial endosymbiotic theory (SET) and composite individuality: transition from bacterial to eukaryotic genomes. Microbiology Today, 31: 172–174. DOI: .Google Scholar
Martin, W. & Russell, M. J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society of London, Series B, 362: 1887–1926. DOI: .CrossRefGoogle ScholarPubMed
Martin, W., Rotte, C., Hoffmeister, M., et al. (2003). Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. International Union of Biochemistry and Molecular Biology: Life, 55: 193–204. DOI: .CrossRefGoogle Scholar
Martínez, I., Arsuaga, J. L., Quam, R., et al. (2008). Human hyoid bones from the middle Pleistocene site of the Sima de los Huesos (Sierra de Atapuerca, Spain). Journal of Human Evolution, 54: 118–124. DOI: .CrossRefGoogle Scholar
Martins, Z. (2011). Organic chemistry of carbonaceous meteorites. Elements, 7: 35–40. DOI: .CrossRefGoogle Scholar
Maynard Smith, J. & Szathmáry, E. (1999). The Origins of Life: From the Birth of Life to the Origin of Language. Oxford, UK: Oxford University Press. ISBN: 019286209X.Google Scholar
Melosh, H. J. (1988). The rocky road to panspermia. Nature, 332: 687–688. DOI: .CrossRefGoogle ScholarPubMed
Miller, S. L. (1953). Production of amino acids under possible primitive Earth conditions. Science, 117: 528–529. DOI: .CrossRefGoogle ScholarPubMed
Miller, S. L. & Bada, J. L. (1988). Submarine hot springs and the origin of life. Nature, 334: 609–611. DOI: .CrossRefGoogle ScholarPubMed
Moore, D. (1981). Developmental genetics of Coprinus cinereus: genetic evidence that carpophores and sclerotia share a common pathway of initiation. Current Genetics, 3: 145–150. DOI: .CrossRefGoogle Scholar
Moore, D. (1998). Fungal Morphogenesis. New York: Cambridge University Press. ISBN: 0521552958, 9780521552950. DOI: .CrossRefGoogle Scholar
Moore, D. (2000). Slayers, Saviors, Servants and Sex: An Exposé of Kingdom Fungi. New York: Springer-Verlag. ISBN-10: 0387951016, ISBN-13: 9780387951010. URL: .Google Scholar
Moore, D. (2005). Principles of mushroom developmental biology. International Journal of Medicinal Mushrooms, 7: 79–102. DOI: .CrossRefGoogle Scholar
Moore, D. & Meškauskas, A. (2006). A comprehensive comparative analysis of the occurrence of developmental sequences in fungal, plant and animal genomes. Mycological Research, 110: 251–256. DOI: .CrossRefGoogle ScholarPubMed
Moore, D. & Pöder, R. (2006). Are your children taught anything about fungi at school?Sydowia, 58: 1–2. URL: .Google Scholar
Moore, D., Pöder, R., Molitoris, H. P., et al. (2006). Crisis in teaching future generations about fungi. Mycological Research, 110: 626–627. DOI: .Google Scholar
Moore, D., Robson, G. D. & Trinci, A. P. J. (2011). 21st Century Guidebook to Fungi. Cambridge, UK: Cambridge University Press. ISBN: 9780521186957.CrossRefGoogle Scholar
Newsom, H. E. & Taylor, S. R. (1989). Geochemical implications of the formation of the Moon by a single giant impact. Nature, 338: 29–34. DOI: .CrossRefGoogle Scholar
Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. (2008). Implications of an impact origin for the martian hemispheric dichotomy. Nature, 453: 1220–1223. DOI: .CrossRefGoogle ScholarPubMed
Nisbet, E. (2000). Palaeobiology: the realms of Archaen life. Nature, 405: 625–626. DOI: .CrossRefGoogle Scholar
Nisbet, E., Zahnle, K., Gerasimov, M. V., et al. (2007). Creating habitable zones, at all scales, from planets to mud micro-habitats, on Earth and on Mars. Space Science Reviews, 24: 79–121. DOI: .CrossRefGoogle Scholar
Oparin, A. I. (1957a). The Origin of Life on the Earth. 3rd edn, translated by Synge, Ann. London: Oliver and Boyd. ASIN: B001I4YTQI.Google Scholar
Oparin, A. I. (1957b). Biochemical processes in the simplest structures. In International Symposium on the Origin of Life on the Earth, ed. Oparin, A. I., Braunstein, A., Gelman, N., Deborin, G. & Passynsky, A., pp. 221–228. Moscow: The Publishing House of the Academy of Sciences of the USSR.Google Scholar
Orgel, L. E. (1998). The origin of life: a review of facts and speculations. Trends in Biochemical Sciences (TIBS), 23: 491–495. DOI: .CrossRefGoogle ScholarPubMed
Orgel, L. E. (2004). Prebiotic adenine revisited: eutectics and photochemistry. Origins of Life and Evolution of Biospheres, 34: 361–369. DOI: .CrossRefGoogle ScholarPubMed
Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190: 389–390. DOI: .CrossRefGoogle Scholar
Parker, E. T., Cleaves, H. J., Dworkin, J. P., et al. (2011). Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proceedings of the National Academy of Sciences of the United States of America, 108: 5526–5531. DOI: .CrossRefGoogle Scholar
Pennisi, E. (2004). The birth of the nucleus. Science, 305: 766–768. DOI: .CrossRefGoogle ScholarPubMed
Penny, D. & Poole, A. (1999). The nature of the last universal common ancestor. Current Opinion in Genetics & Development, 9: 672–677. DOI: .CrossRefGoogle ScholarPubMed
Pirozynski, K. A. (1976). Fungal spores in fossil record. Biological Memoirs, 1: 104–120.Google Scholar
Quan, C., Sun, C., Sun, Y. & Sun, G. (2009). High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Research, 30: 424–428. DOI: .CrossRefGoogle Scholar
Read, N. D., Fleißner, A, Roca, M. G. & Glass, N. L. (2010). Hyphal fusion. In Cellular and Molecular Biology of Filamentous Fungi, ed. Borkovich, K. A. & Ebbole, D. J., pp. 260–273. Washington, DC: American Society for Microbiology Press. ISBN-10: 1555814735, ISBN-13: 978–1555814731.CrossRefGoogle Scholar
Read, N. D., Lichius, A., Shoji, J. -Y. & Goryachev, A. B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12: 608–615. DOI: .CrossRefGoogle ScholarPubMed
Redecker, D., Kodner, R. & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289: 1920–1921. DOI: .CrossRefGoogle ScholarPubMed
Reynolds, T. B. & Fink, G. R. (2001). Bakers’ yeast, a model for fungal biofilm formation. Science, 291: 878–881. DOI: .CrossRefGoogle ScholarPubMed
Rikkinen, J., Dörfelt, H., Schmidt, A. R. & Wunderlich, J. (2003). Sooty moulds from European Tertiary amber, with notes on the systematic position of Rosaria (‘Cyanobacteria’). Mycological Research, 107: 251–256. DOI: .CrossRefGoogle Scholar
Riquelme, M. & Bartnicki-García, S. (2008). Advances in understanding hyphal morphogenesis: ontogeny, phylogeny and cellular localization of chitin synthases. Fungal Biology Reviews, 22: 56–70. DOI: .CrossRefGoogle Scholar
Riquelme, M., Bartnicki-García, S., González-Prieto, J. M., et al. (2007). Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryotic Cell, 6: 1853–1864. DOI: .CrossRefGoogle ScholarPubMed
Robb, F. T. & Clark, D. S. (1999). Adaptation of proteins from hyperthermophiles to high pressure and high temperature. Journal of Molecular Biotechnology, 1: 101–105. URL: .Google ScholarPubMed
Robertson, M. P. & Joyce, G. F. (2011). The origins of the RNA world. Cold Spring Harbor Perspectives in Biology, 3: a003608v2. DOI: .Google Scholar
Ruiz-Bermejo, M., Menor-Salván, C., Osuna-Esteban, S. & Veintemillas-Verdaguer, S. (2007). The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. Origins of Life and Evolution of Biospheres, 37: 507–521. DOI: .CrossRefGoogle ScholarPubMed
Russell, M. J. (2010). The hazy details of early Earth’s atmosphere. Science, 330: 754. DOI: .CrossRefGoogle ScholarPubMed
Russell, M. J. & Hall, A. J. (2002). From geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. The Geochemical News, Newsletter of the Geochemical Society, 113: 6–12. URL: .Google Scholar
Russell, M. J., Daniel, R. M., Hall, A. J. & Sherringham, J. (1994). A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. Journal of Molecular Evolution, 39: 231–243. DOI: .CrossRefGoogle Scholar
Sagan, C. & Chyba, C. (1997). The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276: 1217–1221. DOI: .CrossRefGoogle ScholarPubMed
Sanders, W. B. (2001). Lichens: interface between mycology and plant morphology. BioScience, 51: 1025–1035. DOI: [1025:LTIBMA]2.0.CO;2.CrossRefGoogle Scholar
Schopf, J. W. (1993). Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science, 260: 640–646. DOI: .CrossRefGoogle ScholarPubMed
Schrödinger, E. (1944). What is Life? [reprinted 1992, with Mind and Matter and Autobiographical Sketches]. Cambridge, UK: Cambridge University Press. ISBN: 0521427088, 9780521427081.Google Scholar
Schultz, T. R. & Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 105: 5435–5440. DOI: .CrossRefGoogle ScholarPubMed
Scott, E. C. (2009). Evolution vs. Creationism: An Introduction. 2nd revised edn. Berkeley and Los Angeles, CA: University of California Press. ISBN-10: 0520261879, ISBN-13: 978–0520261877.Google Scholar
Simoncini, E., Russell, M. J. & Kleidon, A. (2011). Modeling free energy availability from Hadean hydrothermal systems to the first metabolism. Origins of Life and Evolution of Biospheres. Epub ahead of print. DOI: .CrossRefGoogle ScholarPubMed
Singh, R., Shivaprakash, M. R. & Chakrabarti, A. (2011). Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology. Online: ahead of print. DOI: .CrossRefGoogle ScholarPubMed
Sorokin, Y. I. (1957). The evolution of chemosynthesis. In International Symposium on the Origin of Life on the Earth, ed. Oparin, A. I., Braunstein, A., Gelman, N., Deborin, G. & Passynsky, A., pp. 368–375. Moscow: The Publishing House of the Academy of Sciences of the USSR.Google Scholar
Steinberg, G. (2007). Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryotic Cell, 6: 351–360. DOI: .CrossRefGoogle ScholarPubMed
Steinberg, G. & Schuster, M. (2011). The dynamic fungal cell. Fungal Biology Reviews, 25: 14–37. DOI: .CrossRefGoogle Scholar
Stetter, K. O. (2006). Hyperthermophiles in the history of life. Philosophical Transactions of the Royal Society of London, Series B, 361: 1837–1843. DOI: .CrossRefGoogle ScholarPubMed
Stott, L., Timmermann, A. & Thunell, R. (2007). Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science, 318: 435–438. DOI: .CrossRefGoogle ScholarPubMed
Strömberg, C. A. E. & Feranec, R. S. (2004). The evolution of grass-dominated ecosystems during the late Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 199–201. DOI: .CrossRefGoogle Scholar
Sudarsan, N., Barrick, J. E. & Breaker, R. R. (2010). Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA, 9: 644–647. DOI: .CrossRefGoogle Scholar
Sutherland, I. W. (2001). The biofilm matrix: an immobilized but dynamic microbial environment. Trends in Microbiology, 9: 222–227. DOI: .CrossRefGoogle ScholarPubMed
Taylor, J. W., Jacobson, D. J. & Fisher, M. C. (1999). The evolution of asexual fungi: reproduction, speciation and classification. Annual Review of Phytopathology, 37: 197–246. DOI: .CrossRefGoogle ScholarPubMed
Taylor, T. N., Hass, H. & Kerp, H. (1997). A cyanolichen from the Lower Devonian Rhynie Chert. American Journal of Botany, 84: 992–1004. Stable URL: .CrossRefGoogle ScholarPubMed
Taylor, T. N., Klavins, S. D., Krings, M., et al. (2004). Fungi from the Rhynie chert: a view from the dark side. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 457–473. DOI: .CrossRefGoogle Scholar
Taylor, T. N., Krings, M. & Kerp, H. (2006). Hassiella monospora gen. et sp. nov., a microfungus from the 400 million year old Rhynie chert. Mycological Research, 110: 628–632. DOI: .CrossRefGoogle ScholarPubMed
Taylor, T. N., Taylor, E. L., Decombeix, A. -L., et al. (2010). The enigmatic Devonian fossil Prototaxites is not a rolled-up liverwort mat: comment on the paper by Graham et al. (AJB 97: 268–275). American Journal of Botany, 97: 1074–1078. DOI: .CrossRefGoogle Scholar
Thaddeus, P. (2006). The prebiotic molecules observed in the interstellar gas. Philosophical Transactions of the Royal Society of London, Series B, 361: 1681–1687. DOI: .CrossRefGoogle ScholarPubMed
Tucker, B. J. & Breaker, R. R. (2005). Riboswitches as versatile gene control elements. Current Opinion in Structural Biology, 15: 342–348. DOI: .CrossRefGoogle ScholarPubMed
Urey, H. C. (1952). On the early chemical history of the earth and the origin of life. Proceedings of the National Academy of Sciences of the United States of America, 38: 351–363. URL: .CrossRefGoogle ScholarPubMed
Vajda, V. & McLoughlin, S. (2004). Fungal proliferation at the Cretaceous-Tertiary boundary. Science, 303: 1489. DOI: .CrossRefGoogle ScholarPubMed
van Wyhe, J. (2010). ‘Almighty God! What a wonderful discovery!’: Did Charles Darwin really believe life came from space?Endeavour, 34: 95–103. DOI: .CrossRefGoogle Scholar
Vijh, U. P., Witt, A. N. & Gordon, K. D. (2005). Small polycyclic aromatic hydrocarbons in the Red Rectangle. Astrophysical Journal, 619: 368–378. DOI: .CrossRefGoogle Scholar
Visscher, H., Brinkuis, H., Dilcher, D. L., et al. (1996). The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93: 2155–2158. URL: .CrossRefGoogle Scholar
von Frese, R. R. B., Potts, L. V., Wells, S. B., et al. (2009). GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochemistry, Geophysics, and Geosystems, 10: Q02014. DOI: .CrossRefGoogle Scholar
Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiological Reviews, 52: 452–484. URL: .Google ScholarPubMed
Wächtershäuser, G. (1992). Groundworks for an evolutionary biochemistry: the iron-sulphur world. Progress in Biophysics and Molecular Biology, 58: 85–201. DOI: .CrossRefGoogle ScholarPubMed
Wächtershäuser, G.(2000). Life as we don’t know it. Science, 289: 1307–1308. DOI: .CrossRefGoogle Scholar
Wächtershäuser, G.(2006). From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philosophical Transactions of the Royal Society of London, Series B, 361: 1787–1808. DOI: .CrossRefGoogle ScholarPubMed
Ward, P. D. (2006). Impact from the deep. Scientific American, 295: 64–71. URL: .CrossRefGoogle ScholarPubMed
Waters, H., Butler, R. D. & Moore, D. (1975). Structure of aerial and submerged sclerotia of Coprinus lagopus. New Phytologist, 74: 199–205. DOI: .CrossRefGoogle Scholar
Waters, H., Moore, D. & Butler, R. D. (1975). Morphogenesis of aerial sclerotia of Coprinus lagopus. New Phytologist, 74: 207–213. DOI: .CrossRefGoogle Scholar
Wellman, C. H. & Gray, J. (2000). The microfossil record of early land plants. Philosophical Transactions of the Royal Society of London, Series B, 355: 717–732. URL: .CrossRefGoogle ScholarPubMed
Westall, F., deRonde, C. E. J., Southam, G., et al. (2006). Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Transactions of the Royal Society of London, Series B, 361: 1857–1875. DOI: .CrossRefGoogle ScholarPubMed
Whittaker, R. H. (1969). New concepts of kingdoms of organisms. Science, 163: 150–160. DOI: .CrossRefGoogle ScholarPubMed
Wickramasinghe, N. C. (2010). The astrobiological case for our cosmic ancestry. InternationalJournal of Astrobiology, 9: 119–129. DOI: .CrossRefGoogle Scholar
Williams, D. R. (2010). Moon Fact Sheet, NASA Goddard Space Flight Center. URL: .
Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. (2004). Control of gene expression by a natural metabolite-responsive ribozyme. Nature, 428: 281–286. DOI: .CrossRefGoogle ScholarPubMed
Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51: 221–271. URL: .Google ScholarPubMed
Woese, C. R., Kandler, O. & Wheels, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87: 4576–4579. URL: .CrossRefGoogle ScholarPubMed
Wood, W. B. (ed.) (1988). The Nematode, Caenorhabditis elegans. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. ISBN: 9780879694333.Google Scholar
Yuan, X., Xiao, S. & Taylor, T. N. (2005). Lichen-like symbiosis 600 million years ago. Science, 308: 1017–1020. DOI: .CrossRefGoogle ScholarPubMed
Zahnle, K., Arndt, N., Cockell, C., et al. (2007). Emergence of a habitable planet. Space Science Reviews, 129: 35–78. DOI: .CrossRefGoogle Scholar
Zahnle, K., Schaefer, L. & Fegley, B. (2010). Earth’s earliest atmospheres. Cold Spring Harbor Perspectives in Biology, 2: a004895. DOI: .CrossRefGoogle ScholarPubMed
Zaug, A. J. & Cech, T. R. (1986). The intervening sequence RNA of Tetrahymena is an enzyme. Science, 231: 470–475. DOI: .CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David Moore, University of Manchester
  • Book: Fungal Biology in the Origin and Emergence of Life
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139524049.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David Moore, University of Manchester
  • Book: Fungal Biology in the Origin and Emergence of Life
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139524049.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David Moore, University of Manchester
  • Book: Fungal Biology in the Origin and Emergence of Life
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139524049.014
Available formats
×