Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:21:05.300Z Has data issue: false hasContentIssue false

23 - Hematopoietic stem cell transplantation

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Rupert Handgretinger
Affiliation:
Director Bone Marrow Transplantation, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
Victoria Turner
Affiliation:
Director, HLA Laboratory, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
Raymond Barfield
Affiliation:
Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Hematopoietic stem cell transplantation (HSCT) in children was first performed in March 1969 in a child with leukemia, who received cells from a sibling donor. By 1975, HSCT was being used successfully to cure otherwise incurable leukemias in adults. The next two decades produced remarkable advances in our understanding of histocompatibility and brought the development of novel immunosuppressive drugs. With the establishment of international bone marrow donor registries, HSCT has become a thera-peutic option for an increasing number of patients with otherwise incurable leukemias. With the addition of unrelated cord blood transplantation and the possibility of including partially mismatched or three loci-mismatched haploidentical family members in the donor pool, a stem cell donor can now be identified for almost every patient with leukemia for whom allogeneic transplantation is considered to be superior to conventional chemotherapy. This chapter reviews practical aspects of HSCT, its application to children and young adults with leukemia, the acute and late toxicities associated with transplantation, and approaches to exploiting the antileukemic effect of allogeneic transplants while minimizing the short and long-term side effects in children with leukemia.

Donor selection for HSCT

The selection of donors for HSCT depends upon the match between the prospective donor and the recipient in terms of the products of a group of genes on chromosome 6, the so-called major histocompatibility complex (MHC). The products of the MHC tested for histocompatibility purposes are referred to as HLAs or human leukocyte antigens.

Type
Chapter
Information
Childhood Leukemias , pp. 599 - 624
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thomas, E. D., Buckner, C. D., Banaji, M., et al.One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood, 1977; 49: 511–33.Google ScholarPubMed
Oudshoorn, M., Leeuwen, A., Zanden, H. G., et al.Bone Marrow Donors Worldwide: a successful exercise in international cooperation. Bone Marrow Transplant, 1994; 14: 3–8.Google ScholarPubMed
Grewal, S. S., Barker, J. N., Davies, S. M., et al.Unrelated donor hematopoietic cell transplantation: marrow or umbilical cord blood ?Blood, 2003; 101: 4233–44.CrossRefGoogle ScholarPubMed
Henslee-Downey, P. J., Abhyankar, S. H., Parrish, R. S., et al.Use of partially mismatched related donors extends access to allogeneic marrow transplant. Blood, 1997; 89: 3864–72.Google ScholarPubMed
Aversa, F., Tabilio, A., Velardi, A., et al.Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLAhaplotype. N Engl J Med, 1998; 339: 1186–93.CrossRefGoogle Scholar
Handgretinger, R., Klingebiel, T., Lang, P., et al.Megadose transplantation of purified peripheral blood CD 34(+) progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant, 2001; 27: 777–83.CrossRefGoogle Scholar
Robinson, J., Waller, M., Parham, P., et al.IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acid Res, 2003; 31: 311–14.CrossRefGoogle Scholar
Petersdorf, E. W., Longton, G. M., Anasetti, C., et al.Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood, 1997; 89: 1818–23.Google ScholarPubMed
Petersdorf, E. W., Longton, G. M., Anasetti, C., et al.Definition of HLA-DQ as a transplantation antigen. Proc Natl Acad Sci U S A, 1996; 93: 15358–63.CrossRefGoogle ScholarPubMed
Krause, D. S., Fackler, M. J., Civin, C. L., et al.CD34: structure, biology, and clinical utility. Blood, 1996; 87: 1–13.Google ScholarPubMed
Gao, Z., Fackler, M. J., Leung, W., et al.Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34- cell preparations. Exp Hematol, 2001; 29: 910–21.CrossRefGoogle ScholarPubMed
Socinski, M. A., Cannistra, S. A., Elias, A., et al.Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet, 1988; 1: 1194–8.CrossRefGoogle ScholarPubMed
Siena, S., Bregni, M., Brando, B., et al.Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Blood, 1989; 74: 1905–14.Google ScholarPubMed
Schmitz, N., Dreger, P., Suttorp, M., et al.Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood, 1995; 85: 1666–72.Google Scholar
Anderlini, P., Rizzo, J. D., Nugent, M. L., et al.Peripheral blood stem cell donation: an analysis from the International Bone Marrow Transplant Registry (IBMTR) and European Group for Blood and Marrow Transplant (EBMT) databases. Bone Marrow Transplant, 2001; 27: 689–92.CrossRefGoogle Scholar
Korbling, M. & Anderlini, P.Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter ?Blood, 2001; 98: 2900–8.CrossRefGoogle ScholarPubMed
Rocha, V., Chastang, C., Souillet, G., et al.Related cord blood transplants: the Eurocord experience from 78 transplants. Eurocord Transplant group. Bone Marrow Transplant, 1998; 21 (Suppl. 3): S59–62.Google ScholarPubMed
Rubinstein, P., Carrier, C., Scaradavou, A., et al.Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med, 1998; 339: 1565–77.CrossRefGoogle ScholarPubMed
Rocha, V., Cornish, J., Sievers, E. L., et al.Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood, 2001; 97: 2962–71.CrossRefGoogle ScholarPubMed
Gluckman, E., Rocha, V., Boyer-Chammard, A., et al.Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med, 1997; 337: 373–81.CrossRefGoogle ScholarPubMed
Kurtzberg, J., Laughlin, M., Graham, M. L., et al.Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med, 1996; 335: 157–66.CrossRefGoogle ScholarPubMed
Jaroscak, J., Goltry, K., Smith, A., et al.Augmentation of umbilical cord blood (Ucb) transplantation with ex-vivo expanded UCB cells: results of a phase I trial using the Aastrom Replicell system. Blood, 2003; 101: 5061–7.CrossRefGoogle Scholar
Thomson, B. G., Robertson, K. A., Gowan, D., et al.Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood, 2000; 96: 2703–11.Google ScholarPubMed
Dominietto, A., Lamparelli, T., Raiola, A. M., et al.Transplant-related mortality and long-term graft function are significantly influenced by cell dose in patients undergoing allogeneic marrow transplantation. Blood, 2002; 100: 3930–4.CrossRefGoogle ScholarPubMed
Gazitt, Y.Comparison between granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the mobilization of peripheral blood stem cells. Curr Opin Hematol, 2002; 9: 190–8.CrossRefGoogle ScholarPubMed
Pahys, J., Fisher, V., Carneval, M., et al.Successful large volume leukapheresis on a small infant allogeneic donor. Bone Marrow Transplant, 2000; 26: 339–41.CrossRefGoogle ScholarPubMed
Watanabe, T., Takaue, Y., Kawano, Y., et al.HLA-identical sibling peripheral blood stem cell transplantation in children and adolescents. Biol Blood Marrow Transplant, 2002; 8: 26–31.CrossRefGoogle ScholarPubMed
Nussbaumer, W., Schonitzer, D., Trieb, T., et al.Peripheral blood stem cell (PBSC) collection in extremely low-weight infants. Bone Marrow Transplant, 1996; 18: 15–17.Google ScholarPubMed
Spellberg, B. & Schiller, G. J.Autologous bone marrow transplantation in acute leukemia. Hematol Oncol Clin North Am, 1999; 13: 919–38.CrossRefGoogle ScholarPubMed
Ho, V. T. & Soiffer, R. J.The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood, 2001; 98: 3192–204.CrossRefGoogle ScholarPubMed
Champlin, R. E., Passweg, J. R., Zhang, M. J., et al.T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood, 2000; 95: 3996–4003.Google ScholarPubMed
Starobinski, M., Roosnek, E., Hale, G., et al.T cell depletion of allogeneic peripheral blood stem cells. Bone Marrow Transplant, 1998; 21: 429–30.CrossRefGoogle ScholarPubMed
Schumm, M., Lang, P., Taylor, G., et al.Isolation of highly purified autologous and allogeneic peripheral CD34+ cells using the CliniMACS device. J Hematother, 1999; 8: 209–18.CrossRefGoogle ScholarPubMed
Lang, P., Schumm, M., Taylor, G., et al.Clinical scale isolation of highly purified peripheral CD34+progenitors for autologous and allogeneic transplantation in children. Bone Marrow Transplant, 1999; 24: 583–9.CrossRefGoogle ScholarPubMed
Beelen, D. W., Peceny, R., Elmaagacli, A., et al.Transplantation of highly purified HLA-identical sibling donor peripheral blood CD34+ cells without prophylactic post-transplant immunosuppression in adult patients with first chronic phase chronic myeloid leukemia: results of a phase II study. Bone Marrow Transplant, 2000; 26: 823–9.CrossRefGoogle ScholarPubMed
Lang, P., Handgretinger, R., Niethammer, D., et al.Transplantation of highly purified CD34+ progenitor cells from unrelated donors in pediatric leukemia. Blood, 2003; 101: 1630–6.CrossRefGoogle ScholarPubMed
Handgretinger, R., Lang, P., Klingebiel, T., et al.CD34 stem cell dose and development of extensive chronic graft-versus-host disease. Blood, 2002; 99: 3875–6.CrossRefGoogle ScholarPubMed
Elmaagacli, A. H., Peceny, R., Steckel, N., et al.Outcome of transplantation of highly purified peripheral blood CD34+ cells with T-cell add-back compared with unmanipulated bone marrow or peripheral blood stem cells from HLA-identical sibling donors in patients with first chronic phase chronic myeloid leukemia. Blood, 2003; 101: 446–53.CrossRefGoogle ScholarPubMed
Gordon, P. R., Leimig, T., Mueller, I., et al.A large-scale method for T cell depletion: towards graft engineering of mobilized peripheral blood stem cells. Bone Marrow Transplant, 2002; 30: 69–74.CrossRefGoogle Scholar
Aversa, F., Terenzi, A., Felicini, R., et al.Haploidentical stem cell transplantation for acute leukemia. Int J Hematol, 2002; 76 (Suppl. 1): 165–8.CrossRefGoogle ScholarPubMed
Niederwieser, D., Maris, M., Shizuru, J. A., et al.Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood, 2003; 101: 1620–9.CrossRefGoogle ScholarPubMed
Or, R., Shapira, M. Y., Resnick, I., et al.Nonmyeloablative allogeneic stem cell transplantation for the treatment of chronic myeloid leukemia in first chronic phase. Blood, 2003; 101: 441–5.CrossRefGoogle ScholarPubMed
Giralt, S., Estey, E., Albitar, M., et al.Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood, 1997; 89: 4531–6.Google ScholarPubMed
Appelbaum, F. R.Hematopoietic cell transplantation as a form of immunotherapy. Int J Hematol, 2002; 75: 222–7.CrossRefGoogle ScholarPubMed
Appelbaum, F. R.Graft versus leukemia (GVL) in the therapy of acute lymphoblastic leukemia (ALL). Leukemia, 1997; 11(Suppl. 4): S15–17.Google Scholar
Gustafsson, J. A., Remberger, M., Ringden, O., et al.Graft-versus-leukaemia effect in children: chronic GVHD has a significant impact on relapse and survival. Bone Marrow Transplant, 2003; 31: 175–81.CrossRefGoogle Scholar
Locatelli, F., Uderzo, C., Dini, G., et al.Graft-versus-host disease in children: the AIEOP-BMT Group experience with cyclosporin A. Bone Marrow Transplant, 1993; 12: 627–33.Google ScholarPubMed
Doney, K., Fisher, L. D., Appelbaum, F. R., et al.Treatment of adult acute lymphoblastic leukemia with allogeneic bone marrow transplantation. Multivariate analysis of factors affecting acute graft-versus-host disease, relapse, and relapse-free survival. Bone Marrow Transplant, 1991; 7: 453–9.Google ScholarPubMed
Sullivan, K. M., Weiden, P. L., Storb, R., et al.Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood, 1989; 73: 1720–8.Google ScholarPubMed
Horowitz, M. M., Gale, R. P., Sondel, P. M., et al.Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 1990; 75: 555–62.Google ScholarPubMed
Ringden, O., Labopin, M., Gluckman, E., et al.Graft-versus-leukemia effect in allogeneic marrow transplant recipients with acute leukemia is maintained using cyclosporin A combined with methotrexate as prophylaxis. Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant, 1996; 18: 921–9.Google ScholarPubMed
Zikos, P., Lint, M. T., Lamparelli, T., et al.Allogeneic hemopoietic stem cell transplantation for patients with high risk acute lymphoblastic leukemia: favorable impact of chronic graft-versus-host disease on survival and relapse. Haematologica, 1998; 83: 896–903.Google ScholarPubMed
Weiden, P. L., Sullivan, K. M., Flournoy, N., et al.Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med, 1981; 304: 1529–33.CrossRefGoogle ScholarPubMed
Ringden, O., Labopin, M., Gluckman, E., et al.Strong antileukemic effect of chronic graft-versus-host disease in allogeneic marrow transplant recipients having acute leukemia treated with methotrexate and cyclosporine. The Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Transplant Proc, 1997; 29: 733–4.CrossRefGoogle Scholar
Remberger, M., Mattsson, J., Hentschke, P., et al.The graft-versus-leukaemia effect in haematopoietic stem cell transplantation using unrelated donors. Bone Marrow Transplant, 2002; 30: 761–8.CrossRefGoogle ScholarPubMed
Locatelli, F., Zecca, M., Rondelli, R., et al.Graft versus host disease prophylaxis with low-dose cyclosporine-A reduces the risk of relapse in children with acute leukemia given HLA-identical sibling bone marrow transplantation: results of a randomized trial. Blood, 2000; 95: 1572–9.Google ScholarPubMed
Schmidt, H., Ehninger, G., Dopfer, R., et al.Correlation between low CSA plasma concentration and severity of acute GvHD in bone marrow transplantation. Blut, 1988; 57: 139–42.CrossRefGoogle ScholarPubMed
Bacigalupo, A., Lamparelli, T., Gualandi, F., et al.Increased risk of leukemia relapse with high dose cyclosporine after allogeneic marrow transplantation for acute leukemia: 10 year follow-up of a randomized study. Blood, 2001; 98: 3174.CrossRefGoogle Scholar
Zecca, M., Prete, A., Rondelli, R., et al.Chronic graft-versus-host disease in children: incidence, risk factors, and impact on outcome. Blood, 2002; 100: 1192–200.CrossRefGoogle Scholar
Kolb, H. J., Schattenberg, A., Goldman, J. M., et al.Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood, 1995; 86: 2041–50.Google Scholar
Orchard, P. J., Miller, J. C., McGlennen, R., et al.Graft-versus-leukemia is sufficient to induce remission in juvenile myelomonocytic leukemia. Bone Marrow Transplant, 1998; 22: 201–3.CrossRefGoogle ScholarPubMed
Worth, A., Rao, K., Webb, D., et al.Successful treatment of juvenile myelomonocytic leukemia relapsing after stem cell transplantation using donor lymphocyte infusion. Blood, 2003; 101: 1713–14.CrossRefGoogle ScholarPubMed
Bader, P., Stoll, K., Huber, S., et al.Characterization of lineage-specific chimaerism in patients with acute leukaemia and myelodysplastic syndrome after allogeneic stem cell transplantation before and after relapse. Br J Haematol, 2000; 108: 761–8.CrossRefGoogle ScholarPubMed
Bader, P., Holle, W., Klingebiel, T., et al.Mixed hematopoietic chimerism after allogeneic bone marrow transplantation: the impact of quantitative PCR analysis for prediction of relapse and graft rejection in children. Bone Marrow Transplant, 1997; 19: 697–702.CrossRefGoogle ScholarPubMed
Bader, P., Beck, J., Frey, A., et al.Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant, 1998; 21: 487–95.CrossRefGoogle ScholarPubMed
Bader, P., Duckers, G., Kreyenberg, H., et al.Monitoring of donor cell chimerism for the detection of relapse and early immunotherapeutic intervention in acute lymphoblastic leukemias. Ann Hematol, 2002; 81(Suppl. 2): S25–7.Google ScholarPubMed
Schaap, N., Schattenberg, A., Mensink, E., et al.Long-term follow-up of persisting mixed chimerism after partially T cell-depleted allogeneic stem cell transplantation. Leukemia, 2002; 16: 13–21.CrossRefGoogle ScholarPubMed
Parham, P. & McQueen, K. L.Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol, 2003; 3: 108–22.CrossRefGoogle ScholarPubMed
Trinchieri, G.Biology of natural killer cells. Adv Immunol, 1989; 47: 187–376.CrossRefGoogle ScholarPubMed
Karre, K.How to recognize a foreign submarine. Immunol Rev, 1997; 155: 5–9.CrossRefGoogle ScholarPubMed
Ruggeri, L., Capanni, M., Casucci, M., et al.Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood, 1999; 94: 333–9.Google ScholarPubMed
Karre, K.Immunology. A perfect mismatch. Science, 2002; 295: 2029–31.CrossRefGoogle ScholarPubMed
Davies, S. M., Ruggieri, L., DeFor, T., et al.Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood, 2002; 100: 3825–7.CrossRefGoogle ScholarPubMed
Leung, W.Determinants of antileukemic effects of allogeneic NK cells. J Immunol, 2003; 172: 644–50.CrossRefGoogle Scholar
Ruggeri, L., Capanni, M., Urbani, E., et al.Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science, 2002; 295: 2097–100.CrossRefGoogle ScholarPubMed
Munker, R., Gunther, W., & Kolb, H. J.New concepts about graft-versus-host and graft-versus-leukaemia-reactions. A summary of the 5th International Symposium held in Munich, 21 and 22 March 2002. Bone Marrow Transplant, 2002; 30: 549–56.CrossRefGoogle ScholarPubMed
Pui, C. H., Campana, D., & Evans, W. E.Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol, 2001; 2: 597–607.CrossRefGoogle ScholarPubMed
Pui, C. H. & Evans, W. E.Acute lymphoblastic leukemia. N Engl J Med, 1998; 339: 605–15.CrossRefGoogle ScholarPubMed
Heerema, N. A., Nachman, J. B., Sather, H. N., et al.Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children's cancer group. Blood, 1999; 94: 4036–45.Google ScholarPubMed
Johansson, B., Moorman, A. V., Haas, O. A., et al.Hematologic malignancies with t(4;11)(q21;q23) – a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia, 1998; 12: 779–87.CrossRefGoogle Scholar
Sandlund, J. T., Harrison, P. L., Rivera, G., et al.Persistence of lymphoblasts in bone marrow on day 15 and days 22 to 25 of remission induction predicts a dismal treatment outcome in children with acute lymphoblastic leukemia. Blood, 2002; 100: 43–7.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Sancho, J., Behm, F. G., et al.Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 2002; 100: 52–8.CrossRefGoogle ScholarPubMed
Arico, M., Valsecchi, M. G., Camitta, B., et al.Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.CrossRefGoogle ScholarPubMed
Klingebiel, T., Handgretinger, R., Lang, P., et al.Haploidentical transplantation for acute lymphoblastic leukemia in childhood [Review]. Blood, 2004; 18: 181–92.CrossRefGoogle Scholar
Henze, G., Fengler, R., Hartmann, R., et al.Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM group. Blood, 1991; 78: 1166–72.Google ScholarPubMed
Woolfrey, A. E., Anasetti, C., Storer, B., et al.Factors associated with outcome after unrelated marrow transplantation for treatment of acute lymphoblastic leukemia in children. Blood, 2002; 99: 2002–8.CrossRefGoogle ScholarPubMed
Bleakley, M., Shaw, P. J., & Nielsen, J. M.Allogeneic bone marrow transplantation for childhood relapsed acute lymphoblastic leukemia: comparison of outcome in patients with and without a matched family donor. Bone Marrow Transplant, 2002; 30: 1–7.CrossRefGoogle ScholarPubMed
Borgmann, A., Stackelberg, A. von, Hartmann, R., et al.Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood, 2003; 101: 3835–9.CrossRefGoogle Scholar
Uderzo, C., Conter, V., Dini, G., et al.Treatment of childhood acute lymphoblastic leukemia after the first relapse: curative strategies. Haematologica, 2001; 86: 1–7.Google ScholarPubMed
Uderzo, C., Dini, G., Locatelli, F., et al.Treatment of childhood acute lymphoblastic leukemia after the first relapse: curative strategies. Haematologica, 2000; 85: 47–53.Google ScholarPubMed
Eckert, C., Biondi, A., Seeger, K., et al.Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet, 2001; 358: 1239–41.CrossRefGoogle ScholarPubMed
Bader, P., Hancock, J., Kreyenberg, H., et al.Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia, 2002; 16: 1668–72.CrossRefGoogle Scholar
Pui, C. H., Behm, F. G., Downing, J. R., et al.11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol, 1994; 12: 909–15.CrossRefGoogle ScholarPubMed
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al.Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Mounce, K. G., & Grier, H. E.Treatment of patients with acute myelogenous leukemia: review of clinical trials of the past decade. J Pediatr Hematol Oncol, 1995; 17: 185–97.CrossRefGoogle ScholarPubMed
Wells, R. J., Woods, W. G., Lampkin, B. C., et al.Impact of high-dose cytarabine and asparaginase intensification on childhood acute myeloid leukemia: a report from the Childrens Cancer Group. J Clin Oncol, 1993; 11: 538–45.CrossRefGoogle ScholarPubMed
Woods, W. G., Kobrinsky, N., Buckley, J. D., et al.Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children's Cancer Group. Blood, 1996; 87: 4979–89.Google ScholarPubMed
Pui, C. H.Acute leukemia in children. Curr Opin Hematol, 1996; 3: 249–58.CrossRefGoogle ScholarPubMed
Wells, R. J., Arthur, D. C., Srivastava, A., et al.Prognostic variables in newly diagnosed children and adolescents with acute myeloid leukemia: Children's Cancer Group Study 213. Leukemia, 2002; 16: 601–7.CrossRefGoogle ScholarPubMed
Woods, W. G., Neudorf, S., Gold, S., et al.A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood, 2001; 97: 56–62.CrossRefGoogle ScholarPubMed
Stevens, R. F., Hann, I. M., Wheatley, K., et al.Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council's 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Haematol, 1998; 101: 130–40.CrossRefGoogle ScholarPubMed
Tallman, M. S., Andersen, J. W., Schiffer, C. A., et al.All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood, 2002; 100: 4298–302.CrossRefGoogle ScholarPubMed
Tallman, M. S.Advancing the treatment of hematologic malignancies through the development of targeted interventions. Semin Hematol, 2002; 39: 1–5.Google ScholarPubMed
Tallman, M. S. & Nabhan, C.Management of acute promyelocytic leukemia. Curr Oncol Rep, 2002; 4: 381–9.CrossRefGoogle ScholarPubMed
Nemecek, E. R., Golley, T. A., Woolfrey, A. E., et al.Outcome of allogeneic bone marrow transplantation for children with advanced acute myeloid leukemia. Bone Marrow Transplant, 2004; 34: 799–806.CrossRefGoogle ScholarPubMed
Rill, D. R., Moen, R. C., Buschle, M., et al.An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer. Blood, 1992; 79: 2694–700.Google ScholarPubMed
Anderson, J. E., Appelbaum, F. R., & Storb, R.An update on allogeneic marrow transplantation for myelodysplastic syndrome. Leuk Lymphoma, 1995; 17: 95–9.CrossRefGoogle ScholarPubMed
Sutton, L., Chastang, C., Ribaud, P., et al.Factors influencing outcome in de novo myelodysplastic syndromes treated by allogeneic bone marrow transplantation: a long-term study of 71 patients Societe Francaise de Greffe de Moelle. Blood, 1996; 88: 358–65.Google ScholarPubMed
Cheson, B. D., Bennett, J. M., Kantarjian, H., et al.Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood, 2000; 96: 3671–4.Google Scholar
Luger, S. & Sacks, N.Bone marrow transplantation for myelodysplastic syndrome – who ? when ? and which ?Bone Marrow Transplant, 2002; 30: 199–206.CrossRefGoogle Scholar
Heaney, M. L. & Golde, D. W.Myelodysplasia. N Engl J Med, 1999; 340: 1649–60.CrossRefGoogle ScholarPubMed
Passmore, S. J., Hann, I. M., Stiller, C. A., et al.Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood, 1995; 85: 1742–50.Google Scholar
Woods, W. G., Barnard, D. R., Alonzo, T. A., et al.Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol, 2002; 20: 434–40.Google ScholarPubMed
Davies, S. M., Wagner, J. E., DeFor, T., et al.Unrelated donor bone marrow transplantation for children and adolescents with aplastic anaemia or myelodysplasia. Br J Haematol, 1997; 96: 749–56.CrossRefGoogle ScholarPubMed
Anderson, J. E., Anasetti, C., Appelbaum, F. R., et al.Unrelated donor marrow transplantation for myelodysplasia (MDS) and MDS-related acute myeloid leukaemia. Br J Haematol, 1996; 93: 59–67.CrossRefGoogle ScholarPubMed
Lutz, P., Zix-Kieffer, I., Souillet, G., et al.Juvenile myelomonocytic leukemia: analyses of treatment results in the EORTC Children's Leukemia Cooperative Group (CLCG). Bone Marrow Transplant, 1996; 18: 1111–16.Google Scholar
Locatelli, F., Giorgiani, G., & Comoli, P.Allogeneic transplantation of haematopoietic progenitors for myelodysplastic syndromes and myeloproliferative disorders. Bone Marrow Transplant, 1998; 21(Suppl. 2): S17–20.Google ScholarPubMed
Manabe, A., Okamura, J., Yumura-Yagi, K., et al.Allogeneic hematopoietic stem cell transplantation for 27 children with juvenile myelomonocytic leukemia diagnosed based on the criteria of the International JMML Working Group. Leukemia, 2002; 16: 645–9.CrossRefGoogle ScholarPubMed
Niemeyer, C. M., Arico, M., Basso, G., et al.Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood, 1997; 89: 3534–43.Google Scholar
MacMillan, M. L., Davies, S. M., Orchard, P. J., et al.Haemopoietic cell transplantation in children with juvenile myelomonocytic leukaemia. Br J Haematol, 1998; 103: 552–8.CrossRefGoogle ScholarPubMed
Emanuel, P. D., Snyder, R. C., Wiley, T., et al.Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood, 2000; 95: 639–45.Google ScholarPubMed
Castleberry, R. D., Emanuel, P. D., Zuckerman, K. S., et al.A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N Engl J Med, 1994; 331: 1680–4.CrossRefGoogle ScholarPubMed
Dann, E. J. & Rowe, J. M.Biology and therapy of secondary leukaemias. Best Pract Res Clin Haematol, 2001; 14: 119–37.CrossRefGoogle ScholarPubMed
Ballen, K. K. & Antin, J. H.Treatment of therapy-related acute myelogenous leukemia and myelodysplastic syndromes. Hematol Oncol Clin North Am, 1993; 7: 477–93.CrossRefGoogle ScholarPubMed
Yakoub-Agha, I., de La Salmoniere, P., Ribaud, P., et al.Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French society of bone marrow transplantation. J Clin Oncol, 2000; 18: 963–71.CrossRefGoogle ScholarPubMed
Barnard, D. R., Lange, B., Alonzo, T. A., et al.Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood, 2002; 100: 427–34.CrossRefGoogle ScholarPubMed
Hansen, J. A., Gooley, T. A., Martin, P. J., et al.Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med, 1998; 338: 962–8.CrossRefGoogle ScholarPubMed
Rhee, F., Szydlo, R. M., Hermans, J., et al.Long-term results after allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic phase: a report from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant, 1997; 20: 553–60.CrossRefGoogle ScholarPubMed
Elmaagacli, A. H., Basoglu, S., Peceny, R., et al.Improved disease-free-survival after transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical unrelated donors in patients with first chronic phase chronic myeloid leukemia. Blood, 2002; 99: 1130–5.Google ScholarPubMed
Higano, C. S., Chielens, D., Raskind, W., et al.Use of alpha-2a-interferon to treat cytogenetic relapse of chronic myeloid leukemia after marrow transplantation. Blood, 1997; 90: 2549–54.Google ScholarPubMed
Dazzi, F., Szydlo, R. M., Cross, N. C., et al.Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood, 2000; 96: 2712–16.Google ScholarPubMed
Sawyers, C. L., Hochhaus, A., Feldman, E., et al.Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 2002; 99: 3530–9.CrossRefGoogle ScholarPubMed
Druker, B. J., Sawyers, C. L., Kantarjian, H., et al.Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med, 2001; 344: 1038–42.CrossRefGoogle ScholarPubMed
Gorre, M. E., Mohammed, M., Ellwood, K., et al.Clinical resistance to ST-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001; 293: 876–80.CrossRefGoogle ScholarPubMed
Peggs, K. & Mackinnon, S.Imatinib mesylate – the new gold standard for treatment of chronic myeloid leukemia. N Engl J Med, 2003; 348: 1048–50.CrossRefGoogle ScholarPubMed
Pawson, R., Potter, M. N., Theocharous, P., et al.Treatment of relapse after allogeneic bone marrow transplantation with reduced intensity conditioning (FLAG +/− Ida) and second allogeneic stem cell transplant. Br J Haematol, 2001; 115: 622–9.CrossRefGoogle Scholar
Bosi, A., Laszlo, D., Labopin, M., et al.Second allogeneic bone marrow transplantation in acute leukemia: results of a survey by the European Cooperative Group for Blood and Marrow Transplantation. J Clin Oncol, 2001; 19: 3675–84.CrossRefGoogle Scholar
Bacigalupo, A., Lamparelli, T., Bruzzi, P., et al.Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood, 2001; 98: 2942–7.CrossRefGoogle Scholar
Blau, I. W., Basara, N., Bischoff, M., et al.Second allogeneic hematopoietic stem cell transplantation as treatment for leukemia relapsing following a first transplant. Bone Marrow Transplant, 2000; 25: 41–5.CrossRefGoogle ScholarPubMed
Wolff, S. N.Second hematopoietic stem cell transplantation for the treatment of graft failure, graft rejection or relapse after allogeneic transplantation. Bone Marrow Transplant, 2002; 29: 545–52.CrossRefGoogle ScholarPubMed
Shah, A. J., Kapoor, N., Weinberg, K. I., et al.Second hematopoietic stem cell transplantation in pediatric patients: overall survival and long-term follow-up. Biol Blood Marrow Transplant, 2002; 8: 221–8.CrossRefGoogle ScholarPubMed
Kernan, N. A., Bordignon, C., Heller, G., et al.Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants. Blood, 1989; 74: 2227–36.Google ScholarPubMed
Patterson, J., Prentice, H. G., Brenner, M. K., et al.Graft rejection following HLAmatched T-lymphocyte depleted bone marrow transplantation. Br J Haematol, 1986; 63: 221–30.CrossRefGoogle Scholar
Green, A., Clarke, E., Hunt, L., et al.Children with acute lymphoblastic leukemia who receive T-cell-depleted HLAmismatched marrow allografts from unrelated donors have an increased incidence of primary graft failure but a similar overall transplant outcome. Blood, 1999; 94: 2236–46.Google ScholarPubMed
Urbano-Ispizua, A., Rozman, C., Pimentel, P., et al.The number of donor CD 3(+) cells is the most important factor for graft failure after allogeneic transplantation of CD34(+) selected cells from peripheral blood from HLA-identical siblings. Blood, 2001; 97: 383–7.CrossRefGoogle Scholar
Cavazzana-Calvo, M., Jabado, N., Bordigoni, P., et al.In vivo infusion of anti-LFA-1 and anti- CD2 antibodies prevents graft failure after HLA partially incompatible bone marrow transplantation in children with high risk acute lymphoblastic leukaemia. Leuk Lymphoma, 1997; 28: 103–12.CrossRefGoogle ScholarPubMed
Schlegel, P. G., Eyrich, M., Bader, P., et al.OKT-3-based reconditioning regimen for early graft failure in HLA-non-identical stem cell transplants. Br J Haematol, 2000; 111: 668–73.CrossRefGoogle ScholarPubMed
Ferrara, J. L. & Deeg, H. J.Graft-versus-host disease. N Engl J Med, 1991; 324: 667–74.Google ScholarPubMed
Teshima, T. & Ferrara, J. L.Understanding the alloresponse: new approaches to graft-versus-host disease prevention. Semin Hematol, 2002; 39: 15–22.CrossRefGoogle ScholarPubMed
Remberger, M., Persson, U., Hauzenberger, D., et al.An association between human leucocyte antigen alleles and acute and chronic graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Br J Haematol, 2002; 119: 751–9.CrossRefGoogle ScholarPubMed
Rocha, V., Franco, R. F., Porcher, R., et al.Host defense and inflammatory gene polymorphisms are associated with outcomes after HLA-identical sibling bone marrow transplantation. Blood, 2002; 100: 3908–18.CrossRefGoogle ScholarPubMed
Leung, W. H., Turner, V., Richardson, S. L., et al.Effect of HLAclass I or class II incompatibility in pediatric marrow transplantation from unrelated and related donors. Hum Immunol, 2001; 62: 399–407.CrossRefGoogle ScholarPubMed
Mickelson, E. M., Petersdorf, E., Anasetti, C., et al.HLA matching in hematopoietic cell transplantation. Hum Immunol, 2000; 61: 92–100.CrossRefGoogle ScholarPubMed
Goker, H., Haznedaroglu, I. C., & Chao, N. J.Acute graft-vs-host disease: pathobiology and management. Exp Hematol, 2001; 29: 259–77.CrossRefGoogle ScholarPubMed
Glucksberg, H., Storb, R., Fefer, A., et al.Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation, 1974; 18: 295–304.CrossRefGoogle ScholarPubMed
Przepiorka, D., Weisdorf, D., Martin, P., et al.1994 Consensus Conference on acute GVHD grading. Bone Marrow Transplant, 1995; 15: 825–8.Google ScholarPubMed
Zecca, M. & Locatelli, F.Management of graft-versus-host disease in paediatric bone marrow transplant recipients. Paediatr Drugs, 2000; 2: 29–55.CrossRefGoogle ScholarPubMed
Peters, C., Minkov, M., Gadner, H., et al.Statement of current majority practices in graft-versus-host disease prophylaxis and treatment in children. Bone Marrow Transplant, 2000; 26: 405–11.CrossRefGoogle ScholarPubMed
Carpenter, P. A. & Sanders, J. E.Steroid-refractory graft-versus-host disease: past, present and future. Pediatr Transplant, 2003; 7: 19–31.CrossRefGoogle ScholarPubMed
Atkinson, K.Chronic graft-versus-host disease. Bone Marrow Transplant, 1990; 5: 69–82.Google ScholarPubMed
Marks, D. I., Cullis, J. O., Ward, K. N., et al.Allogeneic bone marrow transplantation for chronic myeloid leukemia using sibling and volunteer unrelated donors. A comparison of complications in the first 2 years. Ann Intern Med, 1993; 119: 207–14.CrossRefGoogle ScholarPubMed
Kondo, M., Kojima, S., Horibe, K., et al.Risk factors for chronic graft-versus-host disease after allogeneic stem cell transplantation in children. Bone Marrow Transplant, 2001; 27: 727–30.CrossRefGoogle ScholarPubMed
Bacigalupo, A., Lamparelli, T., Gualandi, F., et al.Prophylactic antithymocyte globulin reduces the risk of chronic graft-versus-host disease in alternative-donor bone marrow transplants. Biol Blood Marrow Transplant, 2002; 8: 656–61.CrossRefGoogle ScholarPubMed
Atkinson, K., Horowitz, M. M., Gale, R. P., et al.Risk factors for chronic graft-versus-host disease after HLA-identical sibling bone marrow transplantation. Blood, 1990; 75: 2459–64.Google ScholarPubMed
Ochs, L. A., Miller, W. J., Filipovich, A. H., et al.Predictive factors for chronic graft-versus-host disease after histocompatible sibling donor bone marrow transplantation. Bone Marrow Transplant, 1994; 13: 455–60.Google ScholarPubMed
Carlens, S., Ringden, O., Remberger, M., et al.Risk factors for chronic graft-versus-host disease after bone marrow transplantation: a retrospective single centre analysis. Bone Marrow Transplant, 1998; 22: 755–61.CrossRefGoogle ScholarPubMed
Yumura-Yagi, K., Inoue, M., Sakata, N., et al.Chronic graft-versus-host disease in children and adolescents after bone marrow transplantation from HLA-matched donors. Int J Hematol, 2000; 71: 278–82.Google ScholarPubMed
Ratanatharathorn, V., Ayash, L., Lazarus, H. M., et al.Chronic graft-versus-host disease: clinical manifestation and therapy. Bone Marrow Transplant, 2001; 28: 121–9.CrossRefGoogle ScholarPubMed
Shulman, H. M., Sullivan, K. M., Weiden, P. L., et al.Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med, 1980; 69: 204–17.CrossRefGoogle ScholarPubMed
Lee, S. J., Klein, J. P., Barrett, A. J., et al.Severity of chronic graft-versus-host disease: association with treatment-related mortality and relapse. Blood, 2002; 100: 406–14.CrossRefGoogle ScholarPubMed
Sanders, J. E., Pritchard, S., Mahoney, P., et al.Growth and development following marrow transplantation for leukemia. Blood, 1986; 68: 1129–35.Google ScholarPubMed
Scott, M. A., Gandhi, M. K., Jestice, H. K., et al.A trend towards an increased incidence of chronic graft-versus-host disease following allogeneic peripheral blood progenitor cell transplantation: a case controlled study. Bone Marrow Transplant, 1998; 22: 273–6.CrossRefGoogle ScholarPubMed
Vicent, M. G., Madero, L., Ortega, J. J., et al.Matched-pair analysis comparing allogeneic PBPCT and BMT from HLA-identical relatives in childhood acute lymphoblastic leukemia. Bone Marrow Transplant, 2002; 30: 9–13.CrossRefGoogle ScholarPubMed
Cole, C. H., Rogers, P. C., Pritchard, S., et al.Thalidomide in the management of chronic graft-versus-host disease in children following bone marrow transplantation. Bone Marrow Transplant, 1994; 14: 937–42.Google ScholarPubMed
Sullivan, K. M., Witherspoon, R. P., Storb, R., et al.Prednisone and azathioprine compared with prednisone and placebo for treatment of chronic graft-v-host disease: prognostic influence of prolonged thrombocytopenia after allogeneic marrow transplantation. Blood, 1988; 72: 546–54.Google ScholarPubMed
Koehler, M. T., Howrie, D., Mirro, J., et al.FK506 (tacrolimus) in the treatment of steroid-resistant acute graft-versus-host disease in children undergoing bone marrow transplantation. Bone Marrow Transplant, 1995; 15: 895–9.Google ScholarPubMed
Baudard, M., Vincent, A., Moreau, P., et al.Mycophenolate mofetil for the treatment of acute and chronic GVHD is effective and well tolerated but induces a high risk of infectious complications: a series of 21 BM or PBSC transplant patients. Bone Marrow Transplant, 2002; 30: 287–95.CrossRefGoogle ScholarPubMed
Benito, A. I., Furlong, T., Martin, P. J., et al.Sirolimus (rapamycin) for the treatment of steroid-refractory acute graft-versus-host disease. Transplantation, 2001; 72: 1924–9.CrossRefGoogle ScholarPubMed
Jacobsohn, D. A. & Vogelsang, G. B.Novel pharmacotherapeutic approaches to prevention and treatment of GVHD. Drugs, 2002; 62: 879–89.CrossRefGoogle ScholarPubMed
Goldberg, J. D., Jacobsohn, D. A., Margolis, J., et al.Pentostatin for the treatment of chronic graft-versus-host disease in children. J Pediatr Hematol Oncol, 2003; 25: 584–8.CrossRefGoogle ScholarPubMed
Eppinger, T., Ehninger, G., Steinert, M., et al.8-Methoxypsoralen and ultraviolet A therapy for cutaneous manifestations of graft-versus-host disease. Transplantation, 1990; 50: 807–11.CrossRefGoogle ScholarPubMed
Furlong, T., Leisenring, W., Storb, R., et al.Psoralen and ultraviolet A irradiation (PUVA) as therapy for steroid-resistant cutaneous acute graft-versus-host disease. Biol Blood Marrow Transplant, 2002; 8: 206–12.CrossRefGoogle ScholarPubMed
Greinix, H. T., Volc-Platzer, B., Rabitsch, W., et al.Successful use of extracorporeal photochemotherapy in the treatment of severe acute and chronic graft-versus-host disease. Blood, 1998; 92: 3098–104.Google ScholarPubMed
Bisaccia, E., Palangio, M., Gonzalez, J., et al.Treating refractory chronic graft-versus-host disease with extracorporeal photochemotherapy. Bone Marrow Transplant, 2003; 31: 291–4.CrossRefGoogle ScholarPubMed
Dall'Amico, R., Rossetti, F., Zulian, F., et al.Photopheresis in paediatric patients with drug-resistant chronic graft-versus-host disease. Br J Haematol, 1997; 97: 848–54.CrossRefGoogle ScholarPubMed
Akpek, G., Zahurak, M. L., Piantadosi, S., et al.Development of a prognostic model for grading chronic graft-versus-host disease. Blood, 2001; 97: 1219–26.CrossRefGoogle ScholarPubMed
Remberger, M., Kumlien, G., Aschan, J., et al.Risk factors for moderate-to-severe chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2002; 8: 674–82.CrossRefGoogle ScholarPubMed
Reiss, U., Cowan, M., McMillan, A., et al.Hepatic venoocclusive disease in blood and bone marrow transplantation in children and young adults: incidence, risk factors, and outcome in a cohort of 241 patients. J Pediatr Hematol Oncol, 2002; 24: 746–50.CrossRefGoogle Scholar
Quabeck, K.The lung as a critical organ in marrow transplantation. Bone Marrow Transplant, 1994; 14 (Suppl. 4): S19–28.Google ScholarPubMed
Nurnberger, W., Willers, R., Burdach, S., et al.Risk factors for capillary leakage syndrome after bone marrow transplantation. Ann Hematol, 1997; 74: 221–4.Google ScholarPubMed
Gratwohl, A., Hermans, J., Goldman, J. M., et al.Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet, 1998; 352: 1087–92.CrossRefGoogle ScholarPubMed
Marmont, A. M., Horowitz, M. M., Gale, R. P., et al.T-cell depletion of HLA-identical transplants in leukemia. Blood, 1991; 78: 2120–30.Google ScholarPubMed
Nash, R. A., Pepe, M. S., Storb, R., et al.Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood, 1992; 80: 1838–45.Google ScholarPubMed
Holler, E., Roncarolo, M. G., Hintermeier-Knabe, R., et al.Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplantation. Bone Marrow Transplant, 2000; 25: 237–41.CrossRefGoogle ScholarPubMed
Remberger, M., Ringden, O., & Markling, L.TNF alpha levels are increased during bone marrow transplantation conditioning in patients who develop acute GVHD. Bone Marrow Transplant, 1995; 15: 99–104.Google ScholarPubMed
Bacigalupo, A., Oneto, R., Bruno, B., et al.Early predictors of transplant-related mortality (TRM) after allogeneic bone marrow transplants (BMT): blood urea nitrogen (BUN) and bilirubin. Bone Marrow Transplant, 1999; 24: 653–9.CrossRefGoogle ScholarPubMed
Ho, V. T., Weller, E., Lee, S. J., et al.Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2001; 7: 223–9.CrossRefGoogle ScholarPubMed
Schots, R., Riet, I., Othman, T. B., et al.An early increase in serum levels of C-reactive protein is an independent risk factor for the occurrence of major complications and 100-day transplant-related mortality after allogeneic bone marrow transplantation. Bone Marrow Transplant, 2002; 30: 441–6.CrossRefGoogle ScholarPubMed
Bacigalupo, A., Oneto, R., Bruno, B., et al.Serum cholinesterase is an early and sensitive marker of graft-versus host-disease (GVHD) and transplant-related mortality (TRM). Bone Marrow Transplant, 2001; 28: 1041–5.CrossRefGoogle Scholar
Khoury, H., Adkins, D., Brown, R., et al.Does early treatment with high-dose methylprednisolone alter the course of hepatic regimen-related toxicity ?Bone Marrow Transplant, 2000; 25: 737–43.CrossRefGoogle ScholarPubMed
Richardson, P. G., Elias, A. D., Krishnan, A., et al.Treatment of severe veno-occlusive disease with defibrotide: compassionate use results in response without significant toxicity in a high-risk population. Blood, 1998; 92: 737–44.Google Scholar
Bernard, G. R., Vincent, J. L., Laterre, P. F., et al.Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med, 2001; 344: 699–709.CrossRefGoogle ScholarPubMed
Verbon, A., Dekkers, P. E., Hove, T. ten, et al.IC14, an anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans. J Immunol, 2001; 166: 3599–605.CrossRefGoogle ScholarPubMed
Cerveri, I., Zoia, M. C., Fulgoni, P., et al.Late pulmonary sequelae after childhood bone marrow transplantation. Thorax, 1999; 54: 131–5.CrossRefGoogle ScholarPubMed
Griese, M., Rampf, U., Hofmann, D., et al.Pulmonary complications after bone marrow transplantation in children: twenty-four years of experience in a single pediatric center. Pediatr Pulmonol, 2000; 30: 393–401.3.0.CO;2-W>CrossRefGoogle Scholar
Afessa, B., Litzow, M. R., & Tefferi, A.Bronchiolitis obliterans and other late onset non-infectious pulmonary complications in hematopoietic stem cell transplantation. Bone Marrow Transplant, 2001; 28: 425–34.CrossRefGoogle ScholarPubMed
Schultz, K. R., Green, G. J., Wensley, D., et al.Obstructive lung disease in children after allogeneic bone marrow transplantation. Blood, 1994; 84: 3212–20.Google ScholarPubMed
Holland, H. K., Wingard, J. R., Beschorner, W. E., et al.Bronchiolitis obliterans in bone marrow transplantation and its relationship to chronic graft-v-host disease and low serum IgG. Blood, 1988; 72: 621–7.Google ScholarPubMed
Clark, J. G., Schwartz, D. A., Flournoy, N., et al.Risk factors for airflow obstruction in recipients of bone marrow transplants. Ann Intern Med, 1987; 107: 648–56.CrossRefGoogle ScholarPubMed
Sakaida, E., Nakaseko, C., Harima, A., et al.Late-onset non-infectious pulmonary complications after allogeneic stem cell transplantation are significantly associated with chronic graft-versus host disease and with the graft-versus-leukemia effect. Blood, 2003; 102: 4236–42.CrossRefGoogle Scholar
Crawford, S. W. & Clark, J. G.Bronchiolitis associated with bone marrow transplantation. Clin Chest Med, 1993; 14: 741–9.Google ScholarPubMed
Cordier, J. F.Organising pneumonia. Thorax, 2000; 55: 318–28.CrossRefGoogle ScholarPubMed
Kantrow, S. P., Hackman, R. C., Boeckh, M., et al.Idiopathic pneumonia syndrome: changing spectrum of lung injury after marrow transplantation. Transplantation, 1997; 63: 1079–86.CrossRefGoogle ScholarPubMed
Yanik, G., Hellerstedt, B., Custer, J., et al.Etanercept (Enbrel) administration for idiopathic pneumonia syndrome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2002; 8: 395–400.CrossRefGoogle ScholarPubMed
Nysom, K., Holm, K., Hesse, B., et al.Lung function after allogeneic bone marrow transplantation for leukaemia or lymphoma. Arch Dis Child, 1996; 74: 432–6.CrossRefGoogle ScholarPubMed
Vose, J. M. & Armitage, J. O.Clinical applications of hematopoietic growth factors. J Clin Oncol, 1995; 13: 1023–35.CrossRefGoogle ScholarPubMed
Volpi, I., Perruccio, K., Tosti, A., et al.Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood, 2001; 97: 2514–21.CrossRefGoogle ScholarPubMed
Ljungman, P.Prevention and treatment of viral infections in stem cell transplant recipients. Br J Haematol, 2002; 118: 44–57.CrossRefGoogle ScholarPubMed
Bowden, R. A., Slichter, S. J., Sayers, M. H., et al.Use of leukocyte-depleted platelets and cytomegalovirus-seronegative red blood cells for prevention of primary cytomegalovirus infection after marrow transplant. Blood, 1991; 78: 246–50.Google ScholarPubMed
Miller, W., Flynn, P., McCullough, J., et al.Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-v-host disease. Blood, 1986; 67: 1162–7.Google ScholarPubMed
Ruutu, T., Ljungman, P., Brinch, L., et al.No prevention of cytomegalovirus infection by anti-cytomegalovirus hyperimmune globulin in seronegative bone marrow transplant recipients. The Nordic BMT Group. Bone Marrow Transplant, 1997; 19: 233–6.CrossRefGoogle ScholarPubMed
Avery, R. K., Adal, K. A., Longworth, D. L., et al.A survey of allogeneic bone marrow transplant programs in the United States regarding cytomegalovirus prophylaxis and pre-emptive therapy. Bone Marrow Transplant, 2000; 26: 763–7.CrossRefGoogle ScholarPubMed
Hale, G. A., Heslop, H. E., Krance, R. A., et al.Adenovirus infection after pediatric bone marrow transplantation. Bone Marrow Transplant, 1999; 23: 277–82.CrossRefGoogle ScholarPubMed
Chakrabarti, S., Mautner, V., Osman, H., et al.Adenovirus infections following allogeneic stem cell transplantation: incidence and outcome in relation to graft manipulation, immunosuppression, and immune recovery. Blood, 2002; 100: 1619–27.CrossRefGoogle ScholarPubMed
Legrand, F., Berrebi, D., Houhou, N., et al.Early diagnosis of adenovirus infection and treatment with cidofovir after bone marrow transplantation in children. Bone Marrow Transplant, 2001; 27: 621–6.CrossRefGoogle ScholarPubMed
Ljungman, P., Deliliers, G. L., Platzbecker, U., et al.Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood, 2001; 97: 388–92.CrossRefGoogle ScholarPubMed
Morrison, V. A., Haake, R. J., & Weisdorf, D. J.The spectrum of non-Candida fungal infections following bone marrow transplantation. Medicine, 1993; 72: 78–89.CrossRefGoogle ScholarPubMed
Martino, R., Subira, M., Rovira, M., et al.Invasive fungal infections after allogeneic peripheral blood stem cell transplantation: incidence and risk factors in 395 patients. Br J Haematol, 2002; 116: 475–82.CrossRefGoogle ScholarPubMed
Shapiro, R. S., McClain, K., Frizzera, G., et al.Epstein–Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood, 1988; 71: 1234–43.Google ScholarPubMed
Gross, T. G., Steinbuch, M., DeFor, T., et al.B cell lymphoproliferative disorders following hematopoietic stem cell transplantation: risk factors, treatment and outcome. Bone Marrow Transplant, 1999; 23: 251–8.CrossRefGoogle ScholarPubMed
Curtis, R. E., Travis, L. B., Rowlings, P. A., et al.Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood, 1999; 94: 2208–16.Google ScholarPubMed
Hale, G. & Waldmann, H.Risks of developing Epstein–Barr virus-related lymphoproliferative disorders after T-cell-depleted marrow transplants. CAMPATH Users. Blood, 1998; 91: 3079–83.Google ScholarPubMed
Kuehnle, I., Huls, M. H., Liu, Z., et al.CD20 monoclonal antibody (rituximab) for therapy of Epstein–Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood, 2000; 95: 1502–5.Google ScholarPubMed
Heslop, H. E., Ng, C. Y., Li, C., et al.Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med, 1996; 2: 551–5.CrossRefGoogle ScholarPubMed
Cavazzana-Calvo, M., Bensoussan, D., Jabado, N., et al.Prevention of EBV-induced B-lymphoproliferative disorder by ex vivo marrow B-cell depletion in HLA-phenoidentical or non-identical T-depleted bone marrow transplantation. Br J Haematol, 1998; 103: 543–51.CrossRefGoogle ScholarPubMed
Esser, J. W., Holt, B., Meijer, E., et al.Epstein–Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood, 2001; 98: 972–8.CrossRefGoogle ScholarPubMed
Wagner, H. J., Rooney, C. M., & Heslop, H. E.Diagnosis and treatment of posttransplantation lymphoproliferative disease after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2002; 8: 1–8.CrossRefGoogle ScholarPubMed
Parkman, R. & Weinberg, K. I.Immunological reconstitution following bone marrow transplantation. Immunol Rev, 1997; 157: 73–8.CrossRefGoogle ScholarPubMed
Storek, J., Gooley, T., Witherspoon, R. P., et al.Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am J Hematol, 1997; 54: 131–8.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Mackall, C. W., Granger, L., Sheard, M. A., et al.T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood, 1993; 82: 2585–94.Google ScholarPubMed
Dumont-Girard, F., Roux, E., Lier, R. A., et al.Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood, 1998; 92: 4464–71.Google ScholarPubMed
Roux, E., Helg, C., Dumont-Girard, F., et al.Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts. Blood, 1996; 87: 3984–92.Google ScholarPubMed
Boehmer, H. von. Thymic selection: a matter of life and death. Immunol Today, 1992; 13: 454–8.CrossRefGoogle Scholar
Kernan, N. A., Collins, N. H., Juliano, L., et al.Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood, 1986; 68: 770–3.Google Scholar
Roux, E., Dumont-Girard, F., Starobinski, M., et al.Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood, 2000; 96: 2299–303.Google ScholarPubMed
Eyrich, M., Croner, T., Leiler, C., et al.Distinct contributions of CD4(+) and CD8(+) naive and memory T-cell subsets to overall T-cell-receptor repertoire complexity following transplantation of T-cell-depleted CD34-selected hematopoietic progenitor cells from unrelated donors. Blood, 2002; 100: 1915–18.CrossRefGoogle ScholarPubMed
Eyrich, M., Lang, P., Lal, S., et al.A prospective analysis of the pattern of immune reconstitution in a paediatric cohort following transplantation of positively selected human leucocyte antigen-disparate haematopoietic stem cells from parental donors. Br J Haematol, 2001; 114: 422–32.CrossRefGoogle Scholar
Chen, X., Barfield, R., Benaim, E., et al.Prediction of T-cell reconstitution by assessment of T-cell receptor excision circle before allogeneic hematopoietic stem cell transplantation in pediatric patients. Blood, 2005; 105: 886–93.CrossRefGoogle ScholarPubMed
Godthelp, B. C., Tol, M. J., Vossen, J. M., et al.T-cell immune reconstitution in pediatric leukemia patients after allogeneic bone marrow transplantation with T-cell-depleted or unmanipulated grafts: evaluation of overall and antigen-specific T-cell repertoires. Blood, 1999; 94: 4358–69.Google ScholarPubMed
Kook, H., Goldman, F., Giller, R., et al.Reconstruction of the immune system after unrelated or partially matched T-cell-depleted bone marrow transplantation in children: functional analyses of lymphocytes and correlation with immunophenotypic recovery following transplantation. Clin Diagn Lab Immunol, 1997; 4: 96–103.Google ScholarPubMed
Weinberg, K., Blazar, B. R., Wagner, J. E., et al.Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood, 2001; 97: 1458–66.CrossRefGoogle ScholarPubMed
Mackall, C. L.T-cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cells, 2000; 18: 10–18.CrossRefGoogle ScholarPubMed
Socie, G., Salooja, N., Cohen, A., et al.Non-malignant late effects after allogeneic stem cell transplantation. Blood, 2003; 101: 3373–85.CrossRefGoogle Scholar
Kramer, J. H., Crittenden, M. R., Halberg, F. E., et al.A prospective study of cognitive functioning following low-dose cranial radiation for bone marrow transplantation. Pediatrics, 1992; 90: 447–50.Google ScholarPubMed
Thuret, I., Michel, G., Carla, H., et al.Long-term side-effects in children receiving allogeneic bone marrow transplantation in first complete remission of acute leukaemia. Bone Marrow Transplant, 1995; 15: 337–41.Google ScholarPubMed
Phipps, S., Dunavant, M., Srivastava, D. K., et al.Cognitive and academic functioning in survivors of pediatric bone marrow transplantation. J Clin Oncol, 2000; 18: 1004–11.CrossRefGoogle ScholarPubMed
Shinagawa, T., Tomita, Y., Ishiguro, H., et al.Final height and growth hormone secretion after bone marrow transplantation in children. Endocr J, 2001; 48: 133–8.CrossRefGoogle ScholarPubMed
Cohen, A., Rovelli, A., Bakker, B., et al.Final height of patients who underwent bone marrow transplantation for hematological disorders during childhood: a study by the Working Party for Late Effects-EBMT. Blood, 1999; 93: 4109–15.Google ScholarPubMed
Bakker, B., Massa, G. G., Oostdijk, W., et al.Pubertal development and growth after total-body irradiation and bone marrow transplantation for haematological malignancies. Eur J Pediatr, 2000; 159: 31–7.CrossRefGoogle ScholarPubMed
Anserini, P., Chiodi, S., Spinelli, S., et al.Semen analysis following allogeneic bone marrow transplantation. Additional data for evidence-based counselling. Bone Marrow Transplant, 2002; 30: 447–51.CrossRefGoogle ScholarPubMed
Lass, A., Akagbosu, F., & Brinsden, P.Sperm banking and assisted reproduction treatment for couples following cancer treatment of the male partner. Hum Reprod Update, 2001; 7: 370–7.CrossRefGoogle ScholarPubMed
Spinelli, S., Chiodi, S., Bacigalupo, A., et al.Ovarian recovery after total body irradiation and allogeneic bone marrow transplantation: long-term follow up of 79 females. Bone Marrow Transplant, 1994; 14: 373–80.Google ScholarPubMed
Grundy, R., Gosden, R. G., Hewitt, M., et al.Fertility preservation for children treated for cancer (1): scientific advances and research dilemmas. Arch Dis Child, 2001; 84: 355–9.CrossRefGoogle ScholarPubMed
Kim, S. S., Battaglia, D. E., & Soules, M. R.The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril, 2001; 75: 1049–56.CrossRefGoogle ScholarPubMed
Baker, K. S., DeFor, T. E., Burns, L. J., et al.New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol, 2003; 21: 1352–8.CrossRefGoogle ScholarPubMed
Curtis, R. E., Rowlings, P. A., Deeg, H. J., et al.Solid cancers after bone marrow transplantation. N Engl J Med, 1997; 336: 897–904.CrossRefGoogle ScholarPubMed
Socie, G., Curtis, R. E., Deeg, H. J., et al.New malignant diseases after allogeneic marrow transplantation for childhood acute leukemia. J Clin Oncol, 2000; 18: 348–57.CrossRefGoogle ScholarPubMed
Andre-Schmutz, I., Le Deist, F., Hacein-Bey-Abina, S., et al.Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet, 2002; 360: 130–7.CrossRefGoogle ScholarPubMed
Marijt, W. A., Heemskerk, M. H., Kloosterboer, F. M., et al.Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci U S A, 2003; 100: 2742–7.CrossRefGoogle ScholarPubMed
Mackall, C. L.Enhancing immune reconstitution after stem cell transplants with cytokines. Cytotherapy, 2002; 4: 427–8.CrossRefGoogle ScholarPubMed
Molldrem, J. J., Komanduri, K., & Wieder, E.Overexpressed differentiation antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol, 2002; 9: 503–8.CrossRefGoogle ScholarPubMed
Falkenburg, J. H., Marijt, W. A., Heemskerk, M. H., et al.Minor histocompatibility antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol, 2002; 9: 497–502.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Hematopoietic stem cell transplantation
    • By Rupert Handgretinger, Director Bone Marrow Transplantation, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Victoria Turner, Director, HLA Laboratory, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raymond Barfield, Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Hematopoietic stem cell transplantation
    • By Rupert Handgretinger, Director Bone Marrow Transplantation, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Victoria Turner, Director, HLA Laboratory, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raymond Barfield, Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Hematopoietic stem cell transplantation
    • By Rupert Handgretinger, Director Bone Marrow Transplantation, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA, Victoria Turner, Director, HLA Laboratory, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA, Raymond Barfield, Assistant Member, Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.024
Available formats
×