Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T01:47:32.650Z Has data issue: false hasContentIssue false

6 - Dielectric charging

Published online by Cambridge University Press:  05 February 2014

George Papaioannou
Affiliation:
University of Athens
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

The reliability of RF MEMS switches constitutes a key issue for their commercial success and, thus, warrants an intense research effort. In the case of capacitive switches, the reliability is practically limited by dielectric charging. More precisely, it comes from the fact that when a capacitive RF MEMS switch is in the down position, i.e. touching the dielectric, there is a high electrical field across this dielectric. This can cause charging of the dielectric, which further results in a change in the pull-in voltage Vpi and may severely limit the functionality of the device (e.g. cause stiction).

Currently, many capacitive switches have been tested in excess of 108 cycles, operating with various voltage waveforms and with acceptable degradation. To increase the device lifetime, several excitation waveforms have been investigated; such as bipolar, two-step unipolar, etc. All these efforts, although prolonging lifetime, have not contributed significantly to our understanding of dielectric charging. The aim of this chapter is to present existing knowledge for lifetime improvement and an understanding of dielectric charging, as well as to analyze the charging processes and injection mechanisms within dielectrics. Finally, having these in mind, this chapter will attempt to examine the issue of dielectric charging from a different perspective.

Type
Chapter
Information
Advanced RF MEMS , pp. 140 - 187
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rebeiz, G. M., RF MEMS: Theory, Design and Technology, Wiley & Sons, pp. 185–92, 2003CrossRefGoogle Scholar
Kressmann, R., Sessler, G. M. and Gunther, P., “Space charge electrets”, IEEE Trans. Dielectr. Electr. Insul., vol. 3, pp. 607–23, 1996CrossRefGoogle Scholar
Moncriefft, D. A., Robinson, V. N. E and Harris, L. B., “Charge neutralization of insulating surfaces in the SEM by gas ionizations”, J. Phys. D Appl. Phys., vol. 11, pp. 2315–25, 1978CrossRefGoogle Scholar
Wibbeler, J., Pfeifer, G. and Hietschold, M., “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS)”, Sens. Actuators A, Phys., vol. 71, pp. 74–80, 1998CrossRefGoogle Scholar
van Spengen, W. M., Puers, R., Mertens, R. and de Wolf, I., “A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches”, J. Micromechan. Microeng., vol. 14, pp. 514–21, 2004CrossRefGoogle Scholar
Chan, E. K., Garikipati, K., and Dutton, R. W., “Characterization of contact electromechanics through capacitance-voltage measurements and simulations”, J. Microelectromechan. Syst., vol. 8, pp. 208–17, 1999CrossRefGoogle Scholar
Reid, J. R., Webster, R. T. and Starman, L. A., “Noncontact measurement of charge induced voltage shift in capacitive MEM-switches”, IEEE Microw. Compon. Lett., vol. 13, pp. 367–9, 2003CrossRefGoogle Scholar
Rottenberg, X., Nauwelaers, B., De, W. Raedt and Tilmans, H. A. C., “Distributed dielectric charging and its impact on RF MEMS devices”, 12th GAAS Symposium, EuMW, pp. 475–8, 2004
Herfst, R. W., Huizing, H. G. A., Steeneken, P. G. and Schmitz, J., “Characterization of dielectric charging in RF MEMS capacitive switches”, IEEE International Conference on Microelectronic Test Structures (ICMTS-06), pp. 133–6, 2006
Herfst, R. W., Huizing, H. G. A., Steeneken, P. G. and Schmitz, J., “Time and voltage dependence of dielectric charging in RF MEMS capacitive switches”, IEEE 45th Annual International Reliability Physics Symposium, pp. 417–20, 2007Google Scholar
Papaioannou, G., Exarchos, M., Theonas, V., Wang, G. and Papapolymerou, J., “Temperature study of the dielectric polarization effects of capacitive RF MEMS switches”, IEEE Trans. Microw. Theory Tech., vol. 53, pp. 3467–73, 2005CrossRefGoogle Scholar
Chan, E. K. and Dutton, R. W., “Effects of surface properties on the effective electrical gap of microelectromechanical devices operating in contact”, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, pp. 598–601, 2000
Vandershueren, J. and Casiot, J., Topics in Applied Physics: Thermally Stimulated Relaxation in Solids, Braunlich, P., Ed. Berlin, Germany: Springer-Verlag, vol. 37, ch. 4, 1979Google Scholar
Papaioannou, G. J., Wang, G., Bessas, D. and Papapolymerou, J., “Contactless dielectric charging mechanisms in RF MEMS capacitive switches”, 1st European Microwave Integrated Circuits Conference, EuMW, pp. 513–16, 2006CrossRefGoogle Scholar
Nieminen, H., Hyyrylainen, J., Veijola, T., Ryhanen, T. and Ermolov, V., “Transient capacitance measurement of MEM capacitor”, Sens. Actuators A, Phys., vol. 117, pp. 267–72, 2005CrossRefGoogle Scholar
van Spengen, W. M., Czamecki, P., Puers, R., van Beek, J. T. M. and de Wolf, I., “The influence of the package environment on the functioning and reliability of RF MEMS switches”, 43rd Annual International Reliability Physics Symposium, pp. 337–41, 2005Google Scholar
Papaioannou, G. J., Exarchos, M., Theonas, V., Psychias, J., Konstantinidis, G., Vasilache, D., Muller, A. and Neculoiu, D., “Effect of space charge polarization in radio frequency microelectromechanical system capacitive switch dielectric charging”, Appl. Phys. Lett., vol. 89, pp. 103512-1–4, 2006CrossRefGoogle Scholar
Papaioannou, G. J. and Papapolymerou, J., “Dielectric charging mechanisms in RF MEMS capacitive switches”, Proceedings of the 37th European Microwave Conference, pp. 1157–60, 2007Google Scholar
Papaioannou, G., Papandreou, E., Papapolymerou, and Daigler, R., “Dielectric discharging processes in RF MEMS capacitive switches”, Proceedings of Asia-Pacific Microwave Conference, pp. 427–30, 2007Google Scholar
Papaioannou, G. J., Giacomozzi, F., Papandreou, E. and Margesin, B., “Charging processes in RF MEMS capacitive switches with SiO2 dielectric”, MEMSWAVE, 2007
Molinero, D., Comulada, R. and Castaner, L., “Dielectric charge measurements in capacitive microelectromechanical switches”, Appl. Phys. Lett., vol. 89, pp. 103506, 2006CrossRefGoogle Scholar
Yuan, X., Cherepko, S., Hwang, J., Goldsmith, C. L., Nordquist, C. and Dyck, C., “Initial observation and analysis of dielectric-charging effects on RF MEMS capacitive switches”, International Microwave Symposium, pp. 1943–6, 2004Google Scholar
Rottenberg, X., I. de Wolf, B. Nauwelaers, K. J. C., W. de Raedt and Tilmans, H. A. C., “Analytical model of the dc actuation of electrostatic MEMS devices with distributed dielectric charging and nonplanar electrodes”, J. Microelectromechan. Syst., vol. 16, pp. 1243–53, 2007CrossRefGoogle Scholar
Reid, J. R. and Webster, R. T., “Measurements of charging in capacitive microelectromechanical switches”, Electron. Lett., vol. 38, pp. 1544–5, 2002CrossRefGoogle Scholar
C. O’Mahony, Hill, M., Duane, R., Kelleher, A. M. and Mathewson, A., “Effects of dielectric charging on the reliability of capacitive microswitches”, Proceedings of Micromechanics Europe, Delft, The Netherlands, pp. 151–5, Nov. 2003
Melle, S., de Conto, D., Dubuc, D., Grenier, K., Vendier, O., Muraro, J. L., Cazaux, J. L. and Plana, R., “Reliability modeling of capacitive RF MEMS”, IEEE Trans. Microw. Theory Techn., vol. 53, pp. 3482–8, 2005CrossRefGoogle Scholar
Melle, S., de Conto, D., Mazenq, L., Dubuc, D., Poussard, B., Bordas, C., Grenier, K., Bary, L., Vendier, O., Muraro, J. L., Cazaux, J. L. and Plana, R., “Failure predictive model of capacitive RF MEMS”, Microelectron. Reliab., vol. 45, pp. 1770–5, 2005CrossRefGoogle Scholar
Yuan, X., Peng, Z., Hwang, J. C. M., Forehand, D. I. and Goldsmith, C. L., “A transient SPICE model for dielectric-charging effects in RF MEMS capacitive switches”, IEEE Trans. Electron Devices, vol. 53, pp. 2640–8, 2006CrossRefGoogle Scholar
Yuan, X., Peng, Z., Hwang, J. C. M., Forehand, D. I. and Goldsmith, C. L., “Acceleration of dielectric charging in RF MEMS capacitive switches”, IEEE Trans. Device Mater. Rel., vol. 6, pp. 556–63, 2006CrossRefGoogle Scholar
Calaza, C., Margesin, B., Giacomozzi, F., Rangra, K. and Mulloni, V., “Electromechanical characterization of low actuation voltage RF MEMS capacitive switches based on dc CV measurements”, Microelectron. Eng., vol. 84, pp. 1358–62, 2007CrossRefGoogle Scholar
Patton, S. T. and Zabinski, J. S., “Effects of dielectric charging on fundamental forces and reliability in capacitive microelectromechanical systems radio frequency switch contacts”, J. Appl. Phys., vol. 99, pp. 094910, 2006CrossRefGoogle Scholar
Yamazaki, H., Ikehashi, T., Ohguro, T., Ogawa, E., Kojima, K., Ishimaru, K. and Ishiuchi, H., “An intelligent bipolar actuation method with high stiction immunity for RF MEMS capacitive switches and variable capacitors”, Sens. Actuators A, Phys., vol. 139, pp. 233–6, 2007CrossRefGoogle Scholar
Goldsmith, C. L., Forehand, D. I., Peng, Z., Hwang, J. C. M. and Ebel, J. L., “High-cycle life testing of RF MEMS switches”, International Microwave Symposium, pp. 1805–8, 2007Google Scholar
Peng, Z., Yuan, X., Hwang, J. C. M., Forehand, D. I. and Goldsmith, C. L., “Dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms”, International Microwave Symposium, pp. 1817–20, 2007Google Scholar
Peng, Z., Yuan, X., Hwang, J. C. M., Forehand, D. I. and Goldsmith, C. L., “Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms”, IEEE Trans. Microw. Theory Techn., vol. 55, pp. 2911–18, 2007CrossRefGoogle Scholar
Peng, Z., Yuan, X., Hwang, J. C. M., Forehand, D. I. and Goldsmith, C. L., “Top vs. bottom charging of the dielectric in RF MEMS capacitive switches”, Proceedings of Asia-Pacific Microwave Conference, pp. 1535–8, 2006Google Scholar
Czarnecki, P., Rottenberg, X., Soussan, P., Nolmans, P., Ekkels, P., Muller, P., Tilmans, H. A. C., de Raedt, W., Puers, R., Marchand, L. and de Wolf, I., “New Insights into charging in capacitive RF MEMS switches”, International Reliability Physics Symposium, Phoenix, AZ, 2008Google Scholar
Mardivirin, D., Bouyge, D., Crunteanu, A., Pothier, A. and Blondy, P., “Study of residual charging in dielectric less capacitive MEMS switches”, International Microwave Symposium, pp. 33–36, 2008Google Scholar
van Spengen, W. M., Puers, R., Mertens, R. and de Wolf, I., “A low frequency electrical test set-up for the reliability assessment of capacitive RF MEMS switches”, J. Micromechan. Microeng., vol. 13, pp. 604–12, 2003CrossRefGoogle Scholar
Tsaur, J., Onodera, K., Kobayashi, T., Z.-Wang, J., Heisig, S., Maeda, R. and Suga, T., “Broadband MEMS shunt switches using PZT/HfO2 multi-layered high k dielectrics for high switching isolation”, Sens. Actuators A, Phys., vol. 121, pp. 275–81, 2005CrossRefGoogle Scholar
Luo, J. K., Lin, M., Fu, Y. Q., Wang, L., Flewitt, A. J., Spearing, S. M., Fleck, N. A. and Milne, W. I., “MEMS based digital variable capacitors with a high-k dielectric insulator”, Sens. Actuators A, Phys., vol. 132, pp. 139–46, 2006CrossRefGoogle Scholar
Papaioannou, G. J. and Lisec, T., “Dielectric charging process in AlN RF MEMS capacitive switches”, Proceedings of the 2nd European Microwave Integrated Circuits Conference, pp. 540–3, 2007Google Scholar
Bordas, C., Grenier, K., Dubuc, D., Flahaut, E., Pacchini, S., Paillard, M. and J.-Cazaux, L., “Carbon nanotube based dielectric for enhanced RF MEMS reliability”, IEEE/MTT-S International Microwave Symposium, pp. 375–8, 2007Google Scholar
Czarnecki, P., Rottenberg, X., Puers, R. and de Wolf, I., “Effect of gas pressure on the lifetime of capacitive RF MEMS switches”, MEMS, pp. 890–3, 2006Google Scholar
Czarnecki, P., Rottenberg, X., Puers, R. and De Wolf, I., “Effect of gas pressure on the lifetime of capacitive RF MEMS switches”, 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, pp. 890–3, 2006CrossRefGoogle Scholar
Blondy, P., Crunteanu, A., Pothier, A., Tristant, P., Catherinot, A. and Champeaux, C., “Effects of atmosphere on the reliability of RF MEMS capacitive switches”, European Microwave Integrated Circuits Conference, EuMW, pp. 548–51, 2007Google Scholar
Ramprasad, R., “Phenomenological theory to model leakage currents in metal–insulator–metal capacitor systems”, Phys. Status Solidi (b), vol. 239, pp. 59–70, 2003CrossRefGoogle Scholar
Bucci, C. and Fieschi, R., “Ionic thermocurrents in solids”, Phys. Rev., vol. 148, pp. 816–823, 1966CrossRefGoogle Scholar
Goldsmith, C., Ehmke, J., Malczewski, A., Pillans, B., Eshelman, S., Yao, Z., Brank, J. and Eberly, M., “Lifetime characterization of capacitive RF MEMS switches”, IEEE MTT-S Digest, pp. 227–30, 2001Google Scholar
Czarnecki, P., Rottenberg, X., Puers, R. and de Wolf, I., “Impact of biasing scheme and environment conditions on the lifetime of RF MEMS capacitive switches”, MEMSWAVE, pp. 133–6, Jun. 2005
Papaioannou, G., Papapolymerou, J., Pons, P. and Plana, R., “Dielectric charging in radio frequency microelectromechanical system capacitive switches: A study of material properties and device performance”, Appl. Phys. Lett., vol. 90, pp. 233507, 2007CrossRefGoogle Scholar
Olszewski, Z., Duane, R. and O’Mahony, C., “A study of capacitance-voltage curve narrowing effect in capacitive microelectromechanical switches”, Appl. Phys. Lett., vol. 93, pp. 094101, 2008CrossRefGoogle Scholar
McClure, S. S., Edmonds, L. D., Mihailovich, R., Johnston, A. H., Alonzo, P., DeNatale, J., Lehman, J. and Yui, C., “Radiation effects in micro-electromechanical systems (MEMS): RF relays”, IEEE Trans. Nucl. Sci., vol. 49, pp. 3197–202, 2002CrossRefGoogle Scholar
Cazaux, J., “A physical approach to the radiation damage mechanisms induced by X-rays in X-ray microscopy and related techniques”, J. Microsc., vol. 188, pp. 106–24, 1997CrossRefGoogle Scholar
Crunteanu, A., Pothier, A., Blondy, P., Dumas-Bouchiat, F., Champeaux, C., Catherinot, A., Tristant, P., Vendier, O., Drevon, C., Cazaux, J. L. and Marchand, L., “Gamma radiation effects on RF MEMS capacitive switches”, Microelectron. Reliab., vol. 46, pp. 1741–6, 2006CrossRefGoogle Scholar
Theonas, V. G., Exarchos, M., Papaioannou, G. J. and Konstantinidis, G., “RF MEMS dielectric sensitivity to electromagnetic radiation”, Sens. Actuators A, Phys., vol. 132, pp. 25–33, 2006CrossRefGoogle Scholar
Exarchos, M., Papandreou, E., Pons, P., Lamhamdi, M., Papaioannou, G. J. and Plana, R., “Charging of radiation induced defects in RF MEMS dielectric films”, Microelectron. Reliab., vol. 46, pp. 1695–9, 2006CrossRefGoogle Scholar
Ruan, J., Papandreou, E., Lamhamdi, M., Koutsoureli, M., Coccetti, F., Pons, P., Papaioannou, G. J. and Plana, R., “Alpha particle radiation effects in RF MEMS switches”, Microelectron. Reliab., vol. 48, pp. 1241–4, 2008CrossRefGoogle Scholar
van Turnhout, J., “Electrets,” in Topics in Applied Physics, Sessler, G. M., Ed. Berlin: Springer-Verlag, vol. 33, ch. 3, pp. 81–216, 1987Google Scholar
Matsuura, H., Yoshimoto, M. and Matsunami, H., “Discharging current transient spectroscopy for evaluating traps in insulators”, Jpn. J. Appl. Phys., vol. 34, pp. L185–7, 1995CrossRefGoogle Scholar
Yuan, X., Hwang, J. C. M., Forehand, D. I. and Goldsmith, C. L., “Modeling and characterization of dielectric-charging effects in RF MEMS capacitive switches”, International Microwave Symposium, pp. 753–56, 2005Google Scholar
Exarchos, M., Theonas, V., Pons, P., Papaioannou, G. J., Melle, S., Dubuc, D., Cocetti, F. and Plana, R., “Investigation of charging mechanisms in metal-insulator-metal structures”, Microelectron. Reliab., vol. 45, pp. 1782–5, 2005CrossRefGoogle Scholar
Lamhamdi, M., Guastavino, J., Boudou, L., Segui, Y., Pons, P., Bouscayrol, L. and Plana, R., “Charging-effects in RF capacitive switches influence of insulating layers composition”, Microelectron. Reliab., vol. 46, pp. 1700–4, 2006CrossRefGoogle Scholar
Lamhamdi, M., Pons, P., Boudoul, L., Guastavino, J., Segui, Y. and Plana, R., “Correlation between chemical and electrical properties of SiNx deposed by PECVD: Impact on RF MEMS devices”, International Conference on Solid Dielectrics, Winchester, pp. 643–6, 2007
Lamhamdi, M., Pons, P., Zaghloul, U., Boudou, L., Coccetti, F., Guastavino, J., Segui, Y., Papaioannou, G. and Plana, R., “Voltage and temperature effect on dielectric charging for RF MEMS capacitive switches reliability investigation”, Microelectron. Reliab., vol. 48, pp. 579–82, 2008CrossRefGoogle Scholar
Papandreou, E., Lamhamdi, M., Skoulikidou, C. M., Pons, P., Papaioannou, G. and Plana, R., “Structure dependent charging process in RF MEMS capacitive switches”, Microelectron. Reliab., vol. 47, pp. 1812–17, 2007CrossRefGoogle Scholar
Daigler, R., Papaioannou, G. J., Papandreou, E. and Papapolymerou, J., “Dielectric charging in low temperature silicon nitride for RF MEMS capacitive switches”, MRS-Spring Meeting, 2008Google Scholar
Crunteanu, A., Dumas-Bouchiat, F., Champeaux, C., Catherinot, A. and Blondy, P., “Electrical conduction mechanisms of metal nanoclusters embedded in an amorphous Al2O3 matrix”, Thin Solid Films, vol. 515, pp. 6324–7, 2007CrossRefGoogle Scholar
Nonnenmacher, M., O’Boyle, M. P. and Wickramasinghe, H. K., “Kelvin probe force microscopy”, Appl. Phys. Lett., vol. 58, pp. 2921, 1991CrossRefGoogle Scholar
Lamhamdi, M., Boudou, L., Pons, P., Guastavino, J., Belarni, A., Dilhan, M., Segui, Y. and Plana, R., “Si3N4 thin films properties for RF-MEMS reliability investigation”, The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, pp. 579–82, Jun. 2007Google Scholar
Herfst, R. W., Steeneken, P. G., Schmitz, J., Mank, A. J. G. and van Gils, M., “Kelvin probe study of laterally inhomogeneous dielectric charging and charge diffusion in RF MEMS capacitive switches”, 46th Annual International Reliability Physics Symposium, Phoenix, AZ, pp. 492–5, 2008Google Scholar
Belarni, A., Lamhamdi, M., Pons, P., Boudou, L., Goustavino, J., Segui, Y., Papaioannou, G. and Plana, R., “Kelvin probe microscopy for reliability investigation of RF-MEMS capacitive switches”, Microelectron. Reliab., vol. 48, pp. 1232–6, 2008CrossRefGoogle Scholar
Daniel, V. V., Dielectric Relaxation, New York: Academic Press, 1967Google Scholar
Böttcher, C. J. F., Theory of Electric Polarization, Amsterdam: Elsevier, 1952Google Scholar
van Turhout, J., “Current and charge TSD of polymer electrets resulting from the motion of excess charges”, in Electrets, Charge Storage and Transport in Dielectrics, Perlman, M. M., Ed. Princeton, NJ: The Electrochemical Society, 1973Google Scholar
Yun, B. H., “Measurements of charge propagation in Si3N4 films”, Appl. Phys. Lett., vol. 25, p. 340, 1974CrossRefGoogle Scholar
Shannon, J. M., Deane, S. C., McGarvey, B. and Sandoe, J. N., “Current induced drift mechanism in amorphous SiNx:H thin film diodes”, Appl. Phys. Lett., vol. 65, pp. 2978–80, 1994CrossRefGoogle Scholar
Shea, H. R., Gasparyan, A., Chan, H. B., Arney, S., Frahm, R. E., López, D., Jin, S. and McConnell, R. P., “Effects of electrical leakage currents on MEMS reliability and performance”, IEEE Trans. Device Mater. Rel., vol. 4, pp.198–207, 2004CrossRefGoogle Scholar
Perera, R., Ikeda, A., Hattori, R. and Kuroki, Y., “Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation”, Microelectron. Eng., vol. 65, pp. 357–70, 2003CrossRefGoogle Scholar
Wilcox, P., “A dielectric loss model based on interfacial electron tunnelling”, Can. J. Phys., vol. 50, pp. 912–24, 1972CrossRefGoogle Scholar
Cherki, C., Coelho, R. and Nannoni, R., “Influence of interfacial tunnel exchange on dielectric losses in thin amorphous insulating films”, Phys. Status Solidi (a), vol. 2, pp.785–96, 1972CrossRefGoogle Scholar
Frenkel, J., “On pre-breakdown phenomena in insulators and electronic semiconductors”, Phys. Rev., vol. 54, pp. 647–8, 1938CrossRefGoogle Scholar
Harrell, W. R. and Frey, J., “Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films”, Thin Solid Films, vol. 352, pp. 195–204, 1999CrossRefGoogle Scholar
Ongaro, R. and Pillonnet, A., “Poole-Frenkel (PF) effect high field saturation”, Rev. Phys. Appl., vol. 24, pp. 1085–95, 1989CrossRefGoogle Scholar
Sze, S. M., Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1981Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dielectric charging
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dielectric charging
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dielectric charging
  • Edited by Stepan Lucyszyn, Imperial College of Science, Technology and Medicine, London
  • Book: Advanced RF MEMS
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781995.007
Available formats
×