Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T16:01:27.336Z Has data issue: false hasContentIssue false

3 - Switches and their fabrication technologies

Published online by Cambridge University Press:  05 February 2014

Thomas Lisec
Affiliation:
Fraunhofer - Institut für Siliziumtechnologie (FhG-ISiT)
Stepan Lucyszyn
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

Over the past ten years, a large number of RF MEMS switches have been developed by use of various fabrication technologies. When compared with bulk acoustic wave (BAW) filters, which are fabricated in millions of units and by tens of companies, the commercialisation of RF MEMS switches and varactors is just beginning. First, it is a very complex challenge, from a technological point of view. Like inertial sensors, RF MEMS switches are based on fragile movable microstructures. Instead of polysilicon, highly conductive metals (e.g. gold (Au), aluminium (Al) and copper (Cu)) must be used and these result in a decrease in thermal stability. Therefore, common MEMS packaging techniques performed at 400 to 500 °C cannot be applied. Also, RF MEMS switches must be packaged hermetically for them to be protected from environmental influences. In addition, device reliability is still problematic, mainly because surfaces come into contact for billions of switching cycles. Under these circumstances, it is easy to imagine that a successful development presupposes quite significant scientific, engineering and financial resources. Second, the numerous conflicts between the following are easily underestimated: concept and operation, RF design and signal routing and fabrication and packaging.

The choice of switch principle, as well as appropriate fabrication technology, strongly depends on the particular intended application. Several application areas for RF MEMS switches are named in the report of Wicht Technologie Consulting (WTC) [1]. For ATE applications, ohmic (i.e. metal contact) RF MEMS switches are chosen from the outset because of their excellent performance over a frequency that can range from dc to many tens of gigahertz. The possibility of a direct replacement of solid-state switches by RF MEMS devices is another important advantage. It can be expected that ohmic switches will dominate in telecommunications switching matrices because of their low frequencies of operation. Phased-array antennas, probably the main application for aerospace and defence, could be based on both ohmic and capacitive switches. In total, it is predicted that this area of the market could be worth more than $150 million in 2011. These products are high-end systems with moderate cost sensitivity. The crucial factor here is the performance improvement.

Type
Chapter
Information
Advanced RF MEMS , pp. 41 - 72
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WTC, Think Small, Newsletter, Sep. 2007
Grenier, K., Pons, P., Plana, R. and Graffeuil, J., “Bulk silicon micromachined MEM switches for millimeter-wave applications”, EuMC, London, UK, Sept. 2001Google Scholar
Bordas, C., Grenier, K., Dubuc, D., Paillard, M. and Cazaux, J.-L., “High quality medium power RF-MEMS based impedance tuner for smart microsystem integration”, PRIME, Bordeaux, France, Jul. 2007Google Scholar
Gamble, H. S., Armstrong, B. M., Mitchell, S. J. N., Wu, Y., Fusco, V. F. and Stewart, J. A. C., “Low-loss CPW lines on surface stabilized high-resistivity silicon”, IEEE Microw. Guided Wave Lett., vol. 9, no. 10, pp. 395–7, 1999CrossRefGoogle Scholar
Jansman, A. B. M., van Beek, J. T. M., van Delden, M. H. W. M., Kemmeren, A. L. A. M., den Dekker, A. and Widdershoven, F. P., “Elimination of accumulation charge effects for high-resistivity silicon substrates”, ESSDERC, Estoril, Portugal, Sep. 2003Google Scholar
Kobayashi, S. and Kawai, H., “A capacitive RF MEMS shunt switch”, Workshop on SiP/SoC Integration of MEMS and Pass. Comp. with RF-ICs, Chiba, Japan, Mar. 2004Google Scholar
Thielicke, E., “Design und Realisierung eines elektrostatischen Mikrorelais in Oberflächen-Mikromechanik”, Dissertation, Technische Universität Berlin, 2004Google Scholar
Rottenberg, X., Soussan, P., Stoukatch, S., Czarnecki, P., Nauwelaers, B., Carchon, G., de Wolf, I., de Raedt, W.and Tilmans, H. A. C., “RF-MEMS technology platform for agile mobile and satellite communications”, EuMIC, Manchester, UK, pp. 497–500, Sep. 2006Google Scholar
Vähä-Heikkilä, T. and Ylönen, M., “Highly reliable wideband switched MEMS capacitors”, MEMSWAVE, Orvieto, Italy, Jun. 2006Google Scholar
Boe, A., Seok, S., Daparis, N., Fryziel, M., Loyez, C., Rolland, N. and Rolland, P. A., “V-band MEMS switch on GaAs substrates with 0-level packaging”, MEMSWAVE, Orvieto, Italy, Jun. 2006Google Scholar
Rangra, K., Giacomozzi, F., Margesin, B., Lorenzelli, L., Mulloni, V., Collini, C., Marcelli, R. and Soncini, G., “Micromachined low actuation voltage RF MEMS capacitive switches, technology and characterization”, CAS, Sinaia, Romania, Oct. 2004Google Scholar
Fritschi, R., Ionescu, A. M., Dehollain, C., Declercq, M. J., Hibert, C., Flückiger, P. and Renaud, P., “A novel RF MEMS technological platform”, IECON, Sevilla, Spain, pp. 3052–6, Nov. 2002Google Scholar
Topalli, K., Civi, O. Aydin, Demir, S., Koc, S. and Akin, T., “Monolithically integrated MEMS phase array”, MEMSWAVE, Barcelona, Spain, pp. 119–22, Jun. 2007Google Scholar
Lisec, T., Huth, C., Shakhray, M. and Wagner, B., “Surface-micromachined capacitive RF switches with high thermal stability and low drift using Ni as structural material”, MEMSWAVE, Uppsala, Sweden, 2004Google Scholar
Ulm, M., Reimann, M., Walter, T., Müller-Fiedler, R. and Kasper, E., “Scalability of capacitive RF MEMS switches”, Transducers, Munich, Germany, Jun. 2001Google Scholar
Schöbel, J., Buck, T., Reimann, M., Ulm, M. and Schneider, M., “W-Band RF-MEMS subsystems for smart antennas in automotive radar sensors”, EuMC, Amsterdam, The Netherlands, pp. 1305–8, Oct. 2004Google Scholar
van Beek, J. T. M., Steeneken, P. G., Verheijden, G. J. A. M., Weekamp, J. W., den Dekker, A., Giesen, M., de Graauw, A. J. M., Koning, J. J., Theunis, F., Van Der Wel, P., van Velzen, B. and Wessels, P., “MEMS for wireless communication: application technology opportunities and issues”, MEMSWAVE, Orvieto, Italy, Jun. 2006Google Scholar
Nieminen, H., Ermolov, V., Silanto, S., Nybergh, K. and Ryhänen, T., “Design of a temperature-stable RF MEM capacitor”, J. Microelectromech. Syst., vol. 13, no. 5, pp. 421–8, 2004CrossRefGoogle Scholar
Ziaei, A., Dean, T. and Mancuso, Y., “Lifetime characterization of capacitive power RF MEMS switches”, GAAS, Paris, France, pp. 509–12, Oct. 2005Google Scholar
Schauwecker, B.. Mehner, J., Strohm, K. M., Haspeklo, H. and Luy, J.-F., “Investigations of RF shunt airbridge switches among different environmental conditions”, Sens. Actuators, A Phys. 114, pp. 49–58, 2004CrossRefGoogle Scholar
Stehle, A., Siegel, C., Ziegler, V., Schönlinner, B., Prechtel, U., Thilmont, S., Seidel, H. and Schmid, U., “Low complexity RF-MEMS switch optimized for operation up to 120°C”, EuMC, Munich, Germany, pp. 1229–32, Oct. 2007Google Scholar
den Toonder, J. and van Dijken, A., “Optimisation of mechanical properties of thin free-standing metal films for RF-MEMS”, Mater. Res. Soc. Symp., vol. 820, 2004
Boyle, K. and Steenecken, P., “A five-band reconfigurable PIFA for mobile phones”, Trans. Ant. Propag., vol. 55, no. 11, pp. 3300–9, 2007CrossRefGoogle Scholar
Theunis, F., Lisec, T., Reinert, W., Bielen, J., Yang, D., de Jongh, M. and Krusemann, P. V. E., “A novel and efficient packaging technology for RF-MEMS devices”, ECTC, Reno, NV, pp. 1239–45, May 2007Google Scholar
Siegel, C., Ziegler, V., Schönlinner, B., Prechtel, U. and Schumacher, H., “RF-MEMS based 2-bit reflective phase shifter at X-Band for reconfigurable reflect array antennas”, MEMSWAVE, Barcelona, Spain, pp. 165–9, Jun. 2007Google Scholar
Stehle, A., Ziegler, V., Schönlinner, B., Prechtel, U., Seidel, H. and Schmid, U., “RF-MEMS switches for W-Band applications”, MEMSWAVE, Spain, pp. 25–29, Jun. 2007Google Scholar
Rottenberg, X., Ekkels, P., Brebels, S., Webers, T., Czarnecki, P., Mertens, R. P., Nauwelaers, B., Puers, R., Marchand, L., de Wolf, I., de Raedt, W.and Tilmans, H. A. C., “Novel EFFA-based thin film RF-MEMS technology”, Proc. Transduces, Lyon, France, pp. 145–8, Jun. 2007Google Scholar
Rottenberg, X., Jansen, H., Fiorini, P., de Raedt, W. and Tilmans, H. A. C., “Novel RF-MEMS capacitive switching structures”, EuMC, Milan, Italy, 2002Google Scholar
Rottenberg, X., Mertens, R. P., Nauwelaers, B., de Raedt, W.and Tilmans, H. A. C., “Filter-through device: a distributed EF-MEMS capacitive series switch”, J. Micromech. Microeng., vol. 15, pp. 97–102, 2005CrossRefGoogle Scholar
Cherubini, F., Farinelli, P., Ocera, A., Lavanga, S., Venturelli, L., Lanzieri, C., Cetronio, A., and Sorrentino, R., “RF-MEMS manufacturing process on GaAs substrate fully compatible with MMICs”, MEMSWAVE, Barcelona, Spain, pp. 189–93, Jun. 2007Google Scholar
Ulm, M., Schöbel, J., Reimann, M., Buck, T., Dechow, J., Müller-Fiedler, R., Trah, H.-P. and Kasper, E., “Millimeter-wave microelectromechanical (MEMS) switches for automotive surround sensing systems”, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Germany, Apr. 2003Google Scholar
Pakula, L. S., French, P. J. and Yang, H., “Low voltage, high speed RF switch with high switching capacitance ratio”, Sensors, pp. 480–3, Oct. 2005
Pothier, A., Hitier, S., el Khatib, M., Blondy, P., Orlianges, J. C., Champeaux, C., Catherinot, A., Vendier, O. and Cazaux, J. L., “MEMS DC contact micro relays on ceramic substrate for space communication switching network”, EuMC, Paris, France, pp. 629–32, Oct. 2005Google Scholar
Farinelli, P., Ocera, A., Margesin, B., Giacomozzi, F., and Sorrentino, R., “High performance RF-MEMS cantilever switch”, MEMSWAVE, Orvieto, Italy, pp. 88–91, Jun. 2006Google Scholar
Saias, D., Robert, P., Boret, S., Billard, C., Bouche, G., Belot, D. and Ancey, P., “An above IC MEMS RF switch”, J. Solid State Circuits, vol. 38, no. 12, pp. 2318–24, 2003CrossRefGoogle Scholar
Plötz, F., Michaelis, S., Aigner, R., Timme, H.-J., Binder, J. and Noe, R., “A low-voltage torsional actuator for application in RF-microswitches”, Sens. Actuators A, Phys., vol. 92, no. 1-3, pp. 312–17, Aug. 2001CrossRefGoogle Scholar
Schauwecker, B., Strohm, K. M., Simon, W., Mehner, J. and Luy, J.-F., “A new type of high bandwidth RF MEMS switch – toggle switch”, J. Semicond. Technol. Sci., vol. 2, no. 4, pp. 237–45, 2002Google Scholar
Mack, R., “A MEMS-based reconfigurable RF receiver front-end utilizing multi-port technology”, Dissertation, Universität Erlangen-Nürnberg, 2005
Montanya, J. and Castaner, L., “Novel low voltage electrostatic micro relay”, Eurosensors XIX, Barcelona Spain, Sep. 2005Google Scholar
Segueni, K., Rollier, A.-S., le Garrec, L., Robin, R., Touati, S., Kanciurzewski, A., Buchaillot, L and Millet, O., “A totally free flexible membrane: A design for low electrostatic actuation”, Transducers, Lyon, France, pp. 461–4, Jun. 2007Google Scholar
Rangra, K., Margesin, B., Lorenzelli, L., Giacomozzi, F., Collini, C., Zen, M., Soncini, G., del Tin, L.and Gaddi, R., “Symmetric toggle switch – a new type of RF MEMS switch for telecommunication applications: Design and fabrication”, Sens. Actuators A, Phys. vol. 123–4, pp. 505–14, 2005CrossRefGoogle Scholar
Oberhammer, J. and Stemme, G., “Design and fabrication aspects of an S-shaped film actuator based DC to RF MEMS switch”, J. Microelectromech. Syst., vol. 13, no. 3, pp. 421–8, 2004CrossRefGoogle Scholar
Michaelis, S., “Entwicklung von mikromechanischen Schaltern unter Aspekten industrieller Fertigungsprozesse”, Dissertation, Universität Bremen, 2001
Klaasse, G., Puers, R. and Tilmans, H., “Piezoelectric versus capacitive actuation for a capacitive RF MEMS switch”, SenSens, Veldhoven, The Netherlands, pp. 631–43, Nov. 2002Google Scholar
Park, J.-H., Lee, H.-C., Park, Y.-H., Kim, Y.-D., Ji, C.-H., Bu, J. and Nam, H.-J., “A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator”, J. Micromech. Microeng, vol. 16, pp. 2281–6, 2006CrossRefGoogle Scholar
Park, J.-Y., Lee, H.-C. and Bu, J.-U. “Low voltage operated piezoelectric RF MEMS switches for advanced handset applications”, EuMC, Amsterdam, The Netherlands, pp. 1437–40, Oct. 2004Google Scholar
Klaasse, G., Francis, L. A., Puers, R. and Tilmans, H. A. C., “Piezoelecrically actuated RF MEMS variable capacitor”, MEMSWAVE, Orvieto, Italy, pp. 150–3, Jun. 2006Google Scholar
Lee, H.-C., Park, J.-H., Park, J.-Y., Nam, H.-J. and Bu, J.-U., “Design, fabrication and RF performances of two different types of piezoelectrically actuated ohmic MEMS switches”, J. Micromech. Microeng., vol. 15, pp. 2098–104, 2005CrossRefGoogle Scholar
Quenzer, J. and Wagner, B., “Microactuator arrangement”, E.U. Patent EP 1269506 B1, 2001
Kusterer, J., Kohn, E., Luker, A., Kirby, P. and O’Keefe, M. F., “Diamond high speed and high power MEMS switches”, 4th EMRS DTC Technical Conference, Edinburgh, UK, A26, Jul. 2007Google Scholar
Tilmans, H., Fullin, E., Ziad, H., van de Peer, M. D. J., Kesters, J., van Geffen, E., Bergquist, J., Pantus, M., Beyne, E., Baert, K. and Naso, F., “A fully packaged electromagnetic microrelay”, MEMS, Orlando, FL, pp. 25–30, Jan. 1999Google Scholar
Roth, S., Marxer, C., Feusier, G. and de Rooij, N. F., “One mask Nickel micro-fabricated Reed relay”, MEMS, Miyazaki, Japan, pp. 176–80, Jan. 2000Google Scholar
Ruan, M., Shen, J. and Wheeler, C., “Latching micromagnetic relays”, J. Microelectromech. Syst., vol. 10, no. 4, pp. 511–7, 2001CrossRefGoogle Scholar
den Dekker, A., van Geelen, A., Van Der Wel, P., Koster, R. and Rodenburg, E., “Passi 4: The next technology for passive integration on silicon”, ECTC, Reno, NV, pp. 968–73, May 2007Google Scholar
Pothier, A., Blondy, P., Cros, D., Verdeyme, S., Guillon, P., Champeaux, C., Tristant, P. and Catherinot, A., “Low loss ohmic switches for RF frequency applications”, EuMC, Milano, Italy, Sep. 2002Google Scholar
Ulm, M., “Microelectromechanical capacitive RF switches on high resistivity silicon substrates”, Microtechnologies, Hannover, Germany, pp. 93–6, Sep. 2000Google Scholar
Bordas, C., Ducarouge, B., Grenier, K., Dubuc, D., Bary, L. and Plana, R., “Overview of high power handling RF MEMS for broadband microwave applications”, MMS, Genova, Italy, pp. 96–9, Sep. 2006Google Scholar
Morris, A., Cunningham, S., Dereus, D. and Schröpfer, G., “High-performance integrated RF-MEMS: Part 1 – The process”, GAAS, Munich, Germany, pp. 325–8, 2004Google Scholar
Steeneken, P. G., Rijks, T. G. S. M., van Beek, J. T. M., Ulenaers, M. J. E., de Coster, J., and Puers, R., “Dynamics and squeeze film gas damping of a capacitive RF MEMS switch”, J. Micromech. Microeng., vol. 15, pp. 176–84, 2005CrossRefGoogle Scholar
Coccetti, F., Ducarouge, B., Scheid, E., Dubuc, D., Grenier, K. and Plana, R., “Thermal analysis of RF-MEMS switches for power handling front-end”, GAAS, Paris, France, pp. 513–16, Oct. 2005Google Scholar
Blondy, P., Crunteanu, A., Champeaux, C.., Catherinot, A., Tristant, P., Vendier, O., Caw, J.-L. and Marchand, L., “Dielectric less capacitive MEMS switches”, International Microwave Symposium, Fort Worth, TX, vol. 2, pp. 573–6, Jun. 2004Google Scholar
Vähä-Heikkilä, T. and Ylönen, M., “G-band distributed microelectromechanical components based on CMOS compatible fabrication”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 720–8, 2008CrossRefGoogle Scholar
Lisec, T., Huth, C. and Wagner, B., “Dielectric material impact on capacitive RF MEMS reliability”, EuMC, Amsterdam, The Netherlands, pp. 73–76, Oct. 2004Google Scholar
Ahn, J., Lee, J. Y., Kim, J., Yoo, J. G. and Ryu, C., “Comparison study from sputtering, sol-gel, and ALD processes developing embedded thin film capacitors”, EPTC, Singapore, Dec. 2006Google Scholar
Herrmann, C. F., del Rio, F. W., Miller, D. C., George, S. M., Bright, V. M., Ebel, J. L., Strawser, R. E., Cortez, R. and Leedy, K. D., “Alternative dielectric films for RF MEMS capacitive switches deposited using atomic layer deposited Al2O3/ZnO alloys”, Sens. Actuators A, Phys., vol. 135, pp. 262–72, 2007CrossRefGoogle Scholar
Ma, Q., Tran, Q., Chou, T.-K. A., Heck, J., Bar, H., Kant, R. and Rao, V., “Metal contact reliability of RF MEMS switches”, SPIE, vol. 6463, 2007Google Scholar
Schimkat, J., “Contact materials for microrelays”, MEMS, Heidelberg, Germany, pp. 190–4, Jan. 1998Google Scholar
Lampen, J., Majumder, S., Morrison, R., Chaudhry, A. and Maciel, J., “A wafer-capped, high-lifetime ohmic MEMS RF switch”, J. RF Microw. Computer-Aided Eng., vol. 14, no. 4, pp. 338–44, 2004CrossRefGoogle Scholar
Jahnes, C., Cotte, J., Lund, L., Deligianni, H., Chinthakindi, A., Buchwalter, L. P., Fryer, P., Tornello, J. A., Hoivik, N., Magerlein, J. H. and Seeger, D., “Simultaneous fabrication of RF MEMS switches and resonators using copper-based CMOS interconnect manufacturing methods”, MEMS, Maastricht, The Netherlands, Jan. 2004Google Scholar
Thielicke, E. and Obermeier, E., “A fast switching surface micromachined electrostatic relay”, Transducers, Boston, MA, pp. 899–902, Jun. 2003Google Scholar
Oberhammer, J. and Stemme, G., “Active opening force and passive contact force electrostatic switches for soft metal contact materials”, J. Microelectromech. Syst., vol. 15, no. 5, pp. 1235–42, 2006CrossRefGoogle Scholar
Sterner, M., Roxhed, N., Stemme, G. and Oberhammer, J., “Mechanically tri-stable SPDT metal-contact switch embedded in 3D transmission line”, EuMC, Munich, Germany, Oct. 2007Google Scholar
Die ersten RF-MEMS-Schalter”, Markt & Technik, vol. 12, pp. 24–26, 2007
Zavracky, P., Majumder, S. and McGruer, M., “Micromechanical switches fabricated using Nickel surface micromachining”, J. Microelectromech. Syst., vol. 6, no. 1, pp. 3–9, 1997CrossRefGoogle Scholar
Chen, R. T. and Brown, E. R., “An ultra-compact low loss 30 GHz micromachined coaxial filter”, EuMC, Paris, France, pp. 633–6, Oct. 2005Google Scholar
du Bois, B., Vereecke, G., Witvrouw, A., de Moor, P., van Hoof, C., de Caussemaeker, A. and Verbist, A., “HF etching of Si-oxides and Si-nitrides for surface micromachining”, Dutch National Sensor Conference, Enschede, The Netherlands, May 2001Google Scholar
McKillop, T. Fowler, Goins, D. and Nelson, R., “Design, performance and qualification of a commercially available MEMS switch”, EuMC, Manchester, UK, pp. 1399–1401, Sep. 2006Google Scholar
Modlinski, R., Ratchev, P., Witvrouw, A., Puers, R. and de Wolf, I., “Creep-resistant aluminum alloys for use in MEMS”, J. Micromech. Microeng., vol. 15, pp. 165–70, 2005CrossRefGoogle Scholar
Eyoum, M.-A., Hoivik, N., Jahnes, C., Cotte, J. and Liu, X.-H., “Analysis and modeling of curvature in copper-based MEMS structures fabricated using CMOS interconnect technology”, Transducers, Seoul, Korea, pp. 764–7, Jun. 2005Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×