Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T14:56:13.280Z Has data issue: false hasContentIssue false

2 - Morphology, anatomy, and classification of the Bryophyta

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

With approximately 13 000 species, the Bryophyta compose the second most diverse phylum of land plants. Mosses share with the Marchantiophyta and Anthocerotophyta a haplodiplobiontic life cycle that marks the shift from the haploid-dominated life cycle of the algal ancestors of embryophytes to the sporophyte-dominated life cycle of vascular plants. The gametophyte is free-living, autotrophic, and almost always composed of a leafy stem. Following fertilization a sporophyte develops into an unbranched axis bearing a terminal spore-bearing capsule. The sporophyte remains physically attached to the gametophyte and is at least partially physiologically dependent on the maternal plant. Recent phylogenetic reconstructions suggest that three lineages of early land plants compose an evolutionary grade that spans the transition to land and the origin of plants with branched sporophytes (see Chapter 4). The Bryophyta seem to occupy an intermediate position: their origin predates the divergence of the ancestor to the hornworts and vascular plants but evolved from a common ancestor with liverworts (Qiu et al. 2006). The origin of the earliest land plants can be traced back to the Ordovician and maybe the Cambrian (Strother et al. 2004). Although unambiguous fossils of mosses have only been recovered from sediments dating from younger geological periods (Upper Carboniferous), divergence time estimates based on molecular phylogenies suggest that the origin of mosses dates back to the Ordovician (Newton et al. 2007) and thus that their unique evolutionary history spans at least 400 million years.

Type
Chapter
Information
Bryophyte Biology , pp. 55 - 138
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, H. (1986). Notes on, little known species of the genus Leucodon with immersed or laterally exserted capsules. Acta Phytotaxonomica et Geobotanica, 37, 128–36.Google Scholar
Akiyama, H. & Nishimura, H. (1993). Further studies on branch buds in mosses; “pseudoparaphyllia” and “scaly leaves.”Journal of Plant Research, 106, 101–8.CrossRefGoogle Scholar
Anderson, L. E. (1980). Cytology and reproductive biology of mosses. In The Mosses of North America, ed. Taylor, R. J. & Leviton, A. E., pp. 37–76. San Francisco, CA: Pacific Division, AAAS.Google Scholar
Andersson, K. (2002). Dispersal of spermatozoids from splash-cups of the moss Plagiomnium affine. Lindbergia, 27, 90–6.Google Scholar
Arts, T. (1986). Drought resistant rhizoidal tubers in Fissidens cristatus Wils. ex Mitt. Lindbergia, 12, 119–20.Google Scholar
Arts, T. (1990). Moniliform rhizoidal tubers in Archidium alternifolium (Hedw.) Schimp. Lindbergia, 16, 59–61.Google Scholar
Arts, T. (1994). Rhizoidal tubers and protonemal gemmae in European Ditrichum species. Journal of Bryology, 18, 43–61.CrossRefGoogle Scholar
Arts, T. (1996). The genus Splachnobryum in Africa, with new combinations in Bryum and Gymnostomiella. Journal of Bryology, 19, 65–77.CrossRefGoogle Scholar
Bauer, L. (1959). Auslösung apogamer Sporogonbildung am Regenerationsprotonema von Laubmoosen durch einen vom Muttersporogon abgegebenen Faktor. Naturwissenschaften, 46, 154–5.Google Scholar
Bell, N. E. & Newton, A. E. (2007). Pleurocarpy in the rhizogoniaceous clade. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R. S., pp. 41–64. London: Taylor & Francis.CrossRefGoogle Scholar
Bell, N. E. & York, P. V. (2007). Vetiplanaxis pyrrhobryoides, a new fossil moss genus and species from Middle Cretaceous Burmese amber. Bryologist, 110, 514–20.CrossRefGoogle Scholar
Berthier, J. (1973). Recherches sur la structure et le dévelopement de l'apex du gametophyte feuillé des mousses. Revue Bryologique et Lichénologique, 38, 421–551.Google Scholar
Berthier, J., Bonnot, E. J. & Hébant, C. (1971). Analyse d'un exemple de développement foliare hétéroblastique chez les mousses: apparition de feuilles filamenteuses muscigènes au cours de l'ontogénèse des rameaux latéraux de certaines Dicranales et Encalyptales. Comptes Rendus de l'Académie des Sciences, 273, 2232–5.Google Scholar
Bopp, M. (1954). Untersuchungen über Wachstum und Kapselentwicklung normaler und isolierter Laubmoosporogone. Zeitschrift für Botanik, 42, 331–52.Google Scholar
Bopp, M. (1956). Die Bedeutung der Kalyptra für die Entwicklung der Laubmoossporogone. Berichte der Deutschen Botanischen Gesellschaft, 69, 455–68.Google Scholar
Bopp, M. (1961). Morphogenese der Laubmoose. Biological Review, 36, 237–80.CrossRefGoogle Scholar
Bopp, M. & Bhatla, S. C. (1990). Physiology of sexual reproduction in mosses. Critical Reviews in Plant Sciences, 9, 317–27.CrossRefGoogle Scholar
Boudier, P. (1988). Différenciation structurale de l'épiderme du sporogone chez Sphagnum fimbriatum Wilson. Annales des Sciences Naturelles, Botanique, 13ème série, 8, 143–56.Google Scholar
Bridel, S. E. (1826–27). Bryologia Universa, seu, Systematica ad novam methodum dispositio, historia et descriptio omnium muscorum frondosorum huscusque cognitorum cum synonymia ex auctoribus probatissimis. Lipsiae (Leipzig): Sumtibus J.A. Barth.Google Scholar
Brotherus, V. F. (1924–25). Musci (Laubmoose). In Die Natürlichen Pflanzenfamilien, 2nd edn, vols. 10–11, ed. Engler, A.. Leipzig: Wilhelm Engelmann.Google Scholar
Brown, R. C. & Lemmon, B. E. (1981). Aperture development in spores of the moss, Trematodon longicollis Mx. Protoplasma, 106, 273–87.CrossRefGoogle Scholar
Brown, R. C. & Lemmon, B. E. (1990). Sporogenesis in Bryophytes. In Microspores: Evolution and Ontogeny, ed. Blackmore, S. & Knox, R. B., pp. 55–94. London: Academic Press.CrossRefGoogle Scholar
Bryan, V. S. (2001). Apospory in mosses discovered by Nathanael Pringsheim in a brilliant epoch of botany. Bryologist, 104, 40–6.CrossRefGoogle Scholar
Buck, W. R. (1998). Pleurocarpous mosses of the West Indies. Memoirs of The New York Botanical Garden, 82, 1–400.Google Scholar
Buck, W. R. (2007). The history of pleurocarp classification: Two steps forward, one step back. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R. S., pp. 1–18. Boca Raton, FL: Taylor & Francis.Google Scholar
Buck, W. R. & Goffinet, B. (2000). Morphology and classification of mosses. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 71–123. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Buck, W. R. & Vitt, D. H. (1986). Suggestions for a new classification of pleurocarpous mosses. Taxon, 35, 21–60.CrossRefGoogle Scholar
Buck, W. R., Goffinet, B. & Shaw, A. J. (2000). Testing morphological concepts of orders of pleurocarpous mosses (Bryophyta) using phylogenetic reconstructions based on trnL-trnF and rps4 sequences. Molecular Phylogenetics and Evolution, 16, 180–98.CrossRefGoogle ScholarPubMed
Budke, J. M., Jones, C. S. & Goffinet, B. (2007). Development of the enigmatic peristome of Timmia megapolitana (Timmiaceae; Bryophyta). American Journal of Botany, 94, 460–7.CrossRefGoogle Scholar
Campbell, D. H. (1895). The Structure and Development of the Mosses and Ferns (Archegoniae). London: Macmillan.Google Scholar
Carafa, A., Duckett, J. G., Knox, J. P. & Ligrone, R. (2005). Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants. New Phytologist, 168, 231–40.CrossRefGoogle ScholarPubMed
Chamberlin, M. A. (1980). The morphology and development of the gametophytes of Fissidens and Bryoxiphium (Bryophyta). M. A. thesis, Southern Illinois University, Carbondale.
Chopra, R. N. (1988). In vitro production of apogamy and apospory in bryophytes and their significance. Journal of the Hattori Botanical Laboratory, 64, 169–75.Google Scholar
Cooke, T. J., Poli, D.-B., Sztein, A. E. & Cohen, J. D. (2002). Evolutionary pattern in auxin action. Plant Molecular Biology, 49, 319–38.CrossRefGoogle Scholar
Correns, C. (1899). Untersuchungen über die Vermehrung der Laubmoose durch Brutorgane und Stecklinge. Jena: Fischer.Google Scholar
Cox, C. J., Goffinet, B., Shaw, A. J. & Boles, S. B. (2004). Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Systematic Botany, 29, 234–50.CrossRefGoogle Scholar
Crandall-Stotler, B. (1980). Morphogenetic designs and a theory of bryophyte origins and divergence. BioScience, 30, 580–5.CrossRefGoogle Scholar
Crandall-Stotler, B. (1984). Musci, hepatics and anthocerotes – an essay on analogues. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 1093–129. Nichinan: Hattori Botanical Laboratory.Google Scholar
Crandall-Stotler, B. (1986). Morphogenesis, developmental anatomy and bryophyte phylogenetics: contraindications of monophyly. Journal of Bryology, 14, 1–23.CrossRefGoogle Scholar
Cronberg, N., Natcheva, R. & Hedlund, K. (2006). Microarthropods mediate sperm transfer in mosses. Science, 313, 1255.CrossRefGoogle ScholarPubMed
Crosby, M. R. (1980). The diversity and relationships of mosses. In The Mosses of North America, ed. Taylor, R. J. & Leviton, A. E., pp. 115–29. San Francisco, CA: Pacific Division, AAAS.Google Scholar
Crum, H. A. (2001). Structural Diversity of Bryophytes. University of Michigan Herbarium.Google Scholar
Crundwell, A. C. (1979). Rhizoids and moss taxonomy. In Bryophyte Systematics, ed. Clarke, G. C. S & Duckett, J. G., pp. 347–63. London: Academic Press.Google Scholar
Duckett, J. G. (1994a). Studies of protonemal morphogenesis in mosses. VI. The foliar rhizoids of Calliergon stramineum (Brid.) Kindb. function as organs of attachment. Journal of Bryology, 18, 239–52.CrossRefGoogle Scholar
Duckett, J. G. (1994b). Studies of protonemal morphogenesis in mosses. V. Diphyscium foliosum (Hedw.) Mohr (Buxbaumiales). Journal of Bryology, 18, 223–38.CrossRefGoogle Scholar
Duckett, J. G. & Ligrone, R. (1992). A survey of diaspore liberation mechanisms and germination patterns in mosses. Journal of Bryology, 17, 335–54.CrossRefGoogle Scholar
Duckett, J. G. & Ligrone, R. (1994). Studies of protonemal morphogenesis in mosses. III. The perennial gemmiferous protonema of Rhizomnium punctatum (Hedw.) Kop. Journal of Bryology, 18, 13–26.CrossRefGoogle Scholar
Duckett, J. G., Schmid, A. M. & Ligrone, R. (1998). Protonemal morphogenesis. In Bryology for the Twenty-first Century, ed. Bates, J. W., Ashton, N. W. & Duckett, J. G., pp. 223–46. Leeds: Maney & British Bryological Society.Google Scholar
Duckett, J. G., Burch, J., Fletcher, P. W.et al. (2004). In vitro cultivation of bryophytes: a review of practicalities, problems, progress and promise. Journal of Bryology, 26, 3–20.Google Scholar
Edwards, D. (2000). The role of Mid-Palaeozoic mesofossils in the detection of early bryophytes. Philosophical Transaction of the Royal Society of London, B355, 733–55.CrossRefGoogle ScholarPubMed
Fleischer, M. (1904–23). Die Musci der Flora von Buitenzorg (zugleich Laubmoosflora von Java), 4 vols. Leiden: Brill.Google Scholar
Frahm, J.-P. & Frey, W. (1987). The twist mechanism in the cygneous setae of the genus Campylopus. Morphology, structure and function. Nova Hedwigia, 44, 291–304.Google Scholar
French, J. C. & PaolilloJr., D. J. (1975a). Intercalary meristematic activity in the sporophyte of Funaria (Musci). American Journal of Botany, 62, 86–96.CrossRefGoogle Scholar
French, J. C. & PaolilloJr., D. J. (1975b). On the role of the calyptra in permitting expansion of capsules in the moss Funaria. Bryologist, 78, 438–46.CrossRefGoogle Scholar
Frey, W. (1970). Blattentwicklung bei Moosen. Nova Hedwigia, 20, 463–565.Google Scholar
Frey, W., Hofmann, M. & Hilger, H. H. (2001). The gametophyte-sporophyte junction: unequivocal hints for two evolutionary lines of archegoniate land plants. Flora, 196, 431–45.CrossRefGoogle Scholar
Fritsch, R. (1991). Index to chromosome counts. Bryophytorum Bibliotheca, 40, 1–352.Google Scholar
Garner, D. L. B. & PaolilloJr, D. J. (1973). On the functioning of stomata in Funaria. Bryologist, 76, 423–7.CrossRefGoogle Scholar
Goebel, K. (1898a). Organographie der Pflanzen insbesondere der Archegoniaten und Saamenpflanzen. Zweiter Teil. 1. Heft. Bryophyten. Jena, Germany.
Goebel, K. (1898b). Über den Öffnungsmechanismus der Moos-antheridien. Annales du Jardin Botanique de Buitenzorg, suppl. 2, 65–72.Google Scholar
Goffinet, B. (1997a). The Rhachitheciaceae: revised circumscription and ordinal affinities. Bryologist, 100, 425–39.CrossRefGoogle Scholar
Goffinet, B. (1997b). Phylogeny of the Orthotrichales (Bryopsida). Doctoral dissertation, University of Alberta, Edmonton, Canada.
Goffinet, B. & Buck, W. R. (2004). Systematics of the Bryophyta (Mosses): from molecules to a new classification. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 205–39.Google Scholar
Goffinet, B. & Cox, C. J. (2000). Phylogenetic relationships among basal-most arthrodontous mosses with special emphasis on the evolutionary significance of the Funariineae. Bryologist, 103, 212–23.CrossRefGoogle Scholar
Goffinet, B., Shaw, J., Anderson, L. E. & Mishler, B. D. (1999). Peristome development in mosses in relation to systematics and evolution. V. Diplolepideae: Orthotrichaceae. Bryologist, 102, 581–94.CrossRefGoogle Scholar
Goffinet, B., Cox, C. J., Shaw, A. J. & Hedderson, T. J. (2001). The Bryophyta (Mosses): Systematic and evolutionary inferences from an rps4 gene (cpDNA) phylogeny. Annals of Botany, 87, 191–208.CrossRefGoogle Scholar
Goffinet, B., Wickett, N. J., Werner, O.et al. (2007). Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta). Annals of Botany, 99, 747–53.CrossRefGoogle Scholar
Graham, L. K. E. & Wilcox, L. W. (2000). The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Philosophical Transaction of the Royal Society of London, B355, 757–67.CrossRefGoogle ScholarPubMed
Greene, S. W. (1960). The maturation cycle, or the stages of development of gametangia and capsules in mosses. Transactions of the British Bryological Society, 3, 736–45.CrossRefGoogle Scholar
Győrffy, I. (1917). Über die «Apophyse» der Moose. Magyar Botanikai Lapok, 16, 131–5.Google Scholar
Győrffy, I. (1929). Monstruoses Sporophyton von Tetraplodon bryoïdes aus Suomi. Annales Societatis Zoologicae Botanicae Fennicae Vanamo, 9(7), 299–319.Google Scholar
Győrffy, I. (1931). Sphagnum-Monstruositaten aus der Hohen-Tàtra. Revue Bryologique et Lichénologique, 4, 191–3, pl. V.Google Scholar
Győrffy, I. (1934). Musci monstruosi transsilvanici. I. Catharinea haussknechtii torzok erdélyből. Erdélyi Múzeum, 39, 341–8.Google Scholar
Haberlandt, G. (1886). Beiträge zur Anatomie und Physiologie der Laubmoose. Jahrbücher für Wissenschaftliche Botanik, 17, 359–498, pl. 21–27.Google Scholar
Harvey-Gibson, R. J. & Miller-Brown, D. (1927). Fertilization of Bryophyta. Polytrichum commune (Preliminary note). Annals of Botany, 41, 190–1.CrossRefGoogle Scholar
Hausmann, M. K. & PaolilloJr., D. J. (1977). On the development and maturation of antheridia in Polytrichum. Bryologist, 80, 143–8.CrossRefGoogle Scholar
Hébant, C. (1977). The conducting tissues of bryophytes. Bryophytorum Bibliotheca, 10, i–xi, 1–157.Google Scholar
Heckman, D. S., Geiser, D. M., Eidell, B. R.et al. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–33.CrossRefGoogle ScholarPubMed
Hedenäs, L. (1989a). Axillary hairs in pleurocarpous mosses – a comparative study. Lindbergia, 1, 166–80.Google Scholar
Hedenäs, L. (1989b). Some neglected character distribution patterns among the pleurocarpous mosses. Bryologist, 92, 157–63.CrossRefGoogle Scholar
Hedenäs, L. (1993). Higher taxonomic level relationships among diplolepidous pleurocarpous mosses – a cladistic overview. Journal of Bryology, 18, 723–81.CrossRefGoogle Scholar
Hedenäs, L. (1994). Basal pleurocarpous diplolepideous mosses – a cladistic approach. Bryologist, 97, 225–43.CrossRefGoogle Scholar
Herzfelder, H. (1923). Experimente an Sporophyten von Funaria hygrometrica. Flora, 116, 476–90.Google Scholar
Hofmeister, W. (1870). Ueber die Zellenfolge im Achsenscheitel der Laubmooses. Botanische Zeitung, 28, 441–9, Taf. VII, 457–66, 473–8.Google Scholar
Horton, D. G. (1982). A revision of the Encalyptaceae (Musci), with particular reference to the North American taxa. Part I. Journal of the Hattori Botanical Laboratory, 53, 365–418.Google Scholar
Hughes, J. G. (1969). Factors conditioning development of sexual and apogamous races of Phascum cuspidatum Hedw. New Phytologist, 68, 883–900.CrossRefGoogle Scholar
Huttunen, S., Ignatov, M. S., Müller, K. & Quandt, D. (2004). Phylogeny and evolution of epiphytism in the three moss families Meteoriaceae, Brachytheciaceae, and Lembophyllaceae. Monographs in Systematic Botany from the Missouri Botanical Garden, 98, 328–61.Google Scholar
Ignatov, M. S. & Hedenäs, L. (2007). Homologies of stem structures in pleurocarpous mosses, especially of pseudoparaphyllia and similar structures. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R. S., pp. 269–86. Boca Raton, FL: Taylor & Francis.Google Scholar
Ignatov, M. S. & Ignatova, E. A. (2004). Moss flora of the Middle European Russia. Vol. 2: Fontinalaceae–Amblystegiaceae [In Russian]. Arctoa, 11 (suppl. 2), 611–960.Google Scholar
Imura, S. & Iwatsuki, Z. (1990). Classification of vegetative diaspores on Japanese mosses. Hikobia, 10, 435–43.Google Scholar
Ingold, C. T. (1959). Peristome teeth and spore discharge in mosses. Transactions of the Botanical Society of Edinburgh, 38, 76–88.CrossRefGoogle Scholar
Ingold, C. T. (1965). Spore Liberation. Oxford: Clarendon Press.Google Scholar
Iwatsuki, Z. (1986). A peculiar New Caledonian Sphagnum with rhizoids. Bryologist, 89, 20–2.CrossRefGoogle Scholar
Janzen, P. (1917). Die Haube der Laubmoose. Hedwigia, 58, 158–280.Google Scholar
Kato, M. & Akiyama, H. (2005). Interpolation hypothesis for the origin of the vegetative sporophyte of land plants. Taxon, 54, 443–50.CrossRefGoogle Scholar
Kawai, I. (1968). Taxonomic studies on the midrib in Musci. (1) Significance of the midrib in systematic Botany. The Science Reports of Kanazawa University, 13, 127–57.Google Scholar
Kawai, I. (1989). Systematic studies on the conducting tissues of the gametophyte in Musci: XVI. Relationships between the anatomical characteristics of the stem and the classification system. Asian Journal of Plant Science, 1, 19–52.Google Scholar
Kenrick, P. & Crane, P. R. (1997). The Origin and Early Diversification of Land Plants. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Konopka, A. S., Herendeen, P. S., Merrill, G. S. S. & Crane, P. R. (1997). Sporophytes and gametophytes of Polytrichaceae from the Capanian (Late Cretaceous) of Georgia, U.S.A. International Journal of Plant Sciences, 158, 489–99.CrossRefGoogle Scholar
Konopka, A. S., Herendeen, P. S. & Crane, P. R. (1998). Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, USA. American Journal of Botany, 85, 714–23.CrossRefGoogle ScholarPubMed
Koponen, T. (1982). Rhizoid topography and branching patterns in mosses taxonomy. Nova Hedwigia, suppl. 71, 95–9.Google Scholar
Koponen, A. (1990). Entomophily in the Splachnaceae. Botanical Journal of the Linnean Society, 104, 115–27.CrossRefGoogle Scholar
Kruijer, J. D. H. (2002). Hypopterygiaceae of the world. Blumea Supplement, 13, 1–388.Google Scholar
Kürschner, H. (2004). Intracapsular spore germination in Brachymenium leptophyllum (Müll. Hal.) A. Jaeger (Bryaceae, Bryopsida) – an achorous strategy. Nova Hedwigia, 78, 447–51.CrossRefGoogle Scholar
Laaka-Lindberg, S., Korpelainen, H. & Pohjamo, M. (2003). Dispersal of asexual propagules in bryophytes. Journal of the Hattori Botanical Laboratory, 93, 319–30.Google Scholar
LaFarge-England, C. (1996). Growth-form, branching pattern, and perichaetial position in mosses: cladocarpy and pleurocarpy redefined. Bryologist, 99, 170–86.CrossRefGoogle Scholar
Lal, M. (1984). The culture of bryophytes including apogamy, apospory, parthenogenesis and protoplasts. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 97–115. London: Academic Press.Google Scholar
Leitgeb, H. (1876). Ueber verzweigte Moossporogonien. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 13, 1–20.Google Scholar
Leitgeb, H. (1882). Die Antheridienstände der Laubmoose. Flora, 65, 467–74.Google Scholar
Ligrone, R. (1986). Structure, development and cytochemistry of mucilage secreting hairs in the moss Timmiella barbuloides (Brid.) Moenk. Annals of Botany, 58, 859–68.CrossRefGoogle Scholar
Ligrone, R. & Duckett, J. G. (1998). Development of the leafy shoot in Sphagnum (Bryophyta) involves the activity of both apical and subapical meristems. New Phytologist, 140, 581–95.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. S. (1993). The gametophyte-sporophyte junction in land plants. Advances in Botanical Research, 19, 231–317.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Gambardella, G. (1996). Development and liberation of cauline gemmae in the moss Aulacomnium androgynum (Hedw.) Schwaegr. (Bryales): An ultrastructural study. Annals of Botany, 78, 559–68.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. S. (2000). Conducting tissues and phyletic relationships of bryophytes. Philosophical Transactions of the Royal Society of London, B355, 795–813.CrossRefGoogle ScholarPubMed
Ligrone, R., Vaughn, K. C., Renzaglia, K. S., Knox, J. P. & Duckett, J. G. (2002). Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water-conducting cells. New Phytologist, 156, 491–508.CrossRefGoogle Scholar
Malcolm, B. & Malcolm, N. (2006). Mosses and other Bryophytes, an Illustrated Glossary. 2nd edn. Nelson, New Zealand: Microoptics Press.Google Scholar
Mallón, R., Reinoso, J., Rodríguez-Oubiña, J. & González, M. L. (2006). In vitro development of vegetative propagules in Splachnum ampullaceum: brood cells and chloronematal bulbils. Bryologist, 109, 215–23.CrossRefGoogle Scholar
Malta, N. (1926). Die Gattung Zygodon Hook. & Tayl. Eine monographische Studie. Latvijas Universitates Botanika Darza Darbi, 1, 1–185.Google Scholar
Martínez-Abaigar, J., Núñez-Olivera, E., Matcham, H. W. & Duckett, J. G. (2005). Interactions between parasitic fungi and mosses: pegged and swollen-tipped rhizoids in Funaria and Bryum. Journal of Bryology, 27, 47–53.CrossRefGoogle Scholar
Marchal, É. & Marchal, É. (1907). Aposporie et sexualité chez les mousses. Bulletin de l'Académie Royale de Belgique, 7, 766–89.Google Scholar
Marchal, E. & Marchal, E. (1911). Aposporie et sexualité chez les mousses. Bulletin de l'Académie Royale de Belgique, 9–10, 750–78.Google Scholar
Meusel, H. (1935). Wuchsformen und Wuchstypen der europaischen Laubmoose. Nova Acta Leopoldina (n.s.), 3(12), 219–77.Google Scholar
Miksche, G. E. & Yasuda, S. (1978). Lignin of ‘giant’ mosses and some related species. Phytochemistry, 17, 503–4.CrossRefGoogle Scholar
Miller, C. C. J. & Duckett, J. G. (1985). Cytoplasmic deletion during spermatogenesis in mosses. Gamete Research, 13, 253–70.CrossRefGoogle Scholar
Mishler, B. D. (1986). Ontogeny and phylogeny in Tortula (Musci: Pottiaceae). Systematic Botany, 11, 189–208.CrossRefGoogle Scholar
Mishler, B. D. (1988). Relationships between ontogeny and phylogeny, with reference to bryophytes. In Ontogeny and Systematics, ed. Humphries, C. J., pp. 117–36. New York: Columbia University Press.Google Scholar
Mishler, B. D. & Churchill, S. P. (1984). A cladistic approach to the phylogeny of the “bryophytes.”Brittonia, 36, 406–24.CrossRefGoogle Scholar
Mishler, B. D. & Churchill, S. P. (1985). Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics, 1, 305–28.CrossRefGoogle Scholar
Mishler, B. D. & DeLuna, E. (1991). The use of ontogenetic data in phylogenetic analyses of mosses. Advances in Bryology, 4, 121–67.Google Scholar
Mitten, W. (1859). Musci Indiae Orientalis. An enumeration of the mosses of the East Indies. Journal of the Proceedings of the Linnean Society, Supplement to Botany, 1, 1–171.Google Scholar
Mogensen, G. S. (1978). Spore development and germination in Cinclidium (Mniaceae, Bryophyta), with special reference to spore mortality and false anisospory. Canadian Journal of Botany, 56, 1032–60.CrossRefGoogle Scholar
Mogensen, G. S. (1983). The spore. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 323–43. Nichinan: Hattori Botanical Laboratory.Google Scholar
Moutschen, J. (1951). Quelques cas nouveaux d'aposporie chez les mousses. Lejeunia, 15, 41–50.Google Scholar
Muggoch, H. & Walton, J. (1942). On the dehiscence of the antheridium and the part played by surface tension in the dispersal of spermatocytes in Bryophyta. Proceedings of the Royal Society of London, B130, 448–61.CrossRefGoogle Scholar
Murray, B. M. (1988). Systematics of the Andreaeopsida (Bryophyta): Two orders with links to Takakia. Beiheft zur Nova Hedwigia, 90, 289–336.Google Scholar
Natcheva, R. & Cronberg, N. (2007). Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta). Journal of Evolutionary Biology, 20, 1613–16.CrossRefGoogle Scholar
Nehira, K. (1983). Spore germination, protonema development and sporeling development. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 343–86. Nichinan: Hattori Botanical Laboratory.Google Scholar
Newton, A. E. (2007). Branching architecture in pleurocarpous mosses. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R. S., pp. 287–307. Boca Raton, FL: Taylor & Francis.CrossRefGoogle Scholar
Newton, A. E. & Mishler, B. D. (1994). The evolutionary significance of asexual reproduction in mosses. Journal of the Hattori Botanical Laboratory, 76, 127–45.Google Scholar
Newton, A. E. & Tangney, R. S. (eds.) (2007). Pleurocarpous Mosses: Systematics and Evolution. Boca Raton, FL: Taylor & Francis.CrossRef
Newton, A. E., Cox, C., Duckett, J. G.et al. (2000). Evolution of the major moss lineages. Bryologist, 103, 187–211.CrossRefGoogle Scholar
Newton, A. E., Wikström, N., Bell, N., Forrest, L. L. & Ignatov, M. S. (2007). Dating the diversification of the pleurocarpous mosses. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R. S., pp. 337–66. Boca Raton, FL: Taylor & Francis.CrossRefGoogle Scholar
Newton, M. E. (1984). The cytogenetics of bryophytes. In The Mosses of North America, ed. Taylor, R. J. & Leviton, A. E., pp. 65–96. San Francisco, CA: Pacific Division, AAAS.Google Scholar
O'Brian, T. J. (2007). The phylogenetic distribution of pleurocarpous mosses. In Pleurocarpous Mosses: Systematics and Evolution, ed. Newton, A. E. & Tangney, R. S., pp. 19–40. Boca Raton, FL: Taylor & Francis.Google Scholar
Odu, E. A. (1978). The adaptive importance of moss rhizoids for attachment to the substratum. Journal of Bryology, 10, 163–81.CrossRefGoogle Scholar
Oehlkers, F. & Bopp, M. (1957). Entwicklungsphysiologische Untersuchungen an Moosmutanten. II. Die Korrelation zwischen Sporogon und Kalyptra bei Mutanten von Funaria und Physcomitrium. Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 88, 608–18.Google Scholar
PaolilloJr., D. F. (1975). The release of sperms from the antheridia of Polytrichum formosum. New Phytologist, 74, 287–93.CrossRefGoogle Scholar
Parsons, J. G., Cairns, A., Johnson, C. N.et al. (2007). Bryophyte dispersal by flying foxes: a novel discovery. Oecologia, 152, 112–14.CrossRefGoogle ScholarPubMed
Paton, J. A. & Pearce, J. V. (1957). The occurrence, structure and functions of the stomata in British Bryophytes. Part II. Transactions of the British Bryological Society, 3, 242–59.CrossRefGoogle Scholar
Pelser, P. B., Kruijer, H. J. D. & Verpoorte, R. (2002). What is the function of oil-containing rudimentary branches in the moss Canalohypopterygium tamariscinum? New Zealand Journal of Botany, 40, 149–53.CrossRefGoogle Scholar
Philibert, H. (1884). De l'importance du péristome pour les affinités naturelles des mousses. 2e article. Revue Bryologique, 11, 65–72.Google Scholar
Pringsheim, N. (1876). Über vegetative Sprossung der Moosfrüchte. [Vorrlaüfige Mitteilung]Monatsberichte der Königlichen Preussischen Akademie der Wissenschaft zu Berlin, 1876, 425–30.Google Scholar
Proctor, M. C. F. (1979). Surface wax on the leaves of some mosses. Journal of Bryology, 10, 531–8.CrossRefGoogle Scholar
Proctor, M. C. F. (1984). Structure and ecological adaptation. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 39–64. London: Academic Press.Google Scholar
Proctor, M. C. F. (1992). Scanning electron microscopy of lamella-margin characters and the phytogeography of the genus Polytrichadelphus. Journal of Bryology, 17, 317–33.CrossRefGoogle Scholar
Proctor, M. C. F. (2000a). The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology, 151, 14–49.CrossRefGoogle Scholar
Proctor, M. C. F. (2000b). Physiological ecology. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 225–47. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Proctor, M. C. F. (2005). Why do Polytrichaceae have lamellae? Journal of Bryology, 27, 221–9.CrossRefGoogle Scholar
Qiu, Y. L., Li, L., Wang, B.et al. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences, U.S.A., 103, 15511–16.CrossRefGoogle ScholarPubMed
Ramsay, H. P. (1979). Anisospory and sexual dimorphism in the Musci. In Bryophyte Systematics, ed. Clarke, G. C. S & Duckett, J. G., pp. 479–509. London: Academic Press.Google Scholar
Raven, J. A. (2002). Selection pressures on stomatal evolution. New Phytologist, 153, 371–86.CrossRefGoogle Scholar
Raven, J. A. (2003). Long-distance transport in non-vascular plants. Plant, Cell and Environment, 26, 73–85.CrossRefGoogle Scholar
Reese, W. D. (2000). Extreme leaf dimorphism in Calymperaceae. Bryologist, 103, 534–40.CrossRefGoogle Scholar
Reese, W. D. & Tan, B. C. (1983). The “petiolate” Calymperaceae: A review with a new species. Bulletin of the National Science Museum Series B, 9, 23–32.Google Scholar
Renault, S., Bonnemain, J. L., Faye, L. & Gaudillere, J. P. (1992). Physiological aspects of sugar exchange between the gametophyte and the sporophyte of Polytrichum formosum. Plant Physiology, 100, 1815–22.CrossRefGoogle ScholarPubMed
Renzaglia, K. S. & Garbary, D. J. (2001). Motile gametes of land plants: Diversity, development, and evolution. Critical Reviews in Plant Sciences, 20, 107–213.CrossRefGoogle Scholar
Renzaglia, K. S., Schuette, S., Duff, R. J.et al. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist, 110, 179–213.CrossRefGoogle Scholar
Robinson, H. (1970). Observations on the origin of the specialized leaves of Fissidens and Schistostega. Revue Bryologique et Lichénologique, 37, 941–7.Google Scholar
Robinson, H. (1985). The structure and significance of the Leucobryaceae leaf. Monographs in Systematic Botany from the Missouri Botanical Garden, 11, 111–20.Google Scholar
Roth, D. (1969). Embryo und Embryotheca bei den Laubmoosen. Eine histogenetische und morphologische Untersuchung. Bibliotheca Botanica, 129, 1–49.Google Scholar
Ruhland, W. (1924). Musci. Allgemeiner Teil. In Die natürlichen Pflanzenfamilien, 2nd edn, vol. 10, ed. Engler, A., pp. 1–100. Leipzig: Wilhelm Engelmann.Google Scholar
Sack, F. & PaolilloJr., D. J. (1983). Structure and development of walls in Funaria stomata. American Journal of Botany, 70, 1019–30.CrossRefGoogle Scholar
Salmon, E. S. (1899). On the genus Fissidens. Annals of Botany (Oxford), 13, 103–30.CrossRefGoogle Scholar
Sanderson, M. J. (2003). Molecular data from 23 proteins do not support a Precambrian origin of land plants. American Journal of Botany, 90, 954–6.CrossRefGoogle Scholar
Scheirer, D. C. (1980). Differentiation of bryophyte conducting tissues: structure and histochemistry. Bulletin of the Torrey Botanical Club, 107, 298–307.CrossRefGoogle Scholar
Schofield, W. B. (1981). Ecological significance of morphological characters in the moss gametophyte. Bryologist, 84, 149–65.CrossRefGoogle Scholar
Schofield, W. B. (1985). Introduction to Bryology. Caldwell, NJ: Blackburn Press.Google Scholar
Schofield, W. B. & Hébant, C. (1984). The morphology and anatomy of the moss gametophore. In New Manual of Bryology, vol. 2., ed. Schuster, R. M., pp. 627–57. Nichinan: Hattori Botanical Laboratory.Google Scholar
Schuster, R. M. (1997). On Takakia and the phylogenetic relationships of the Takakiales. Nova Hedwigia, 64, 281–310.Google Scholar
Schuster, R. M. (1984). Comparative anatomy and morphology of the Hepaticae. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 760–891. Nichinan: Hattori Botanical Laboratory.Google Scholar
Schwartz, O. M. (1994). The development of the peristome-forming layers in the Funariaceae. International Journal of Plant Sciences, 155, 640–57.CrossRefGoogle Scholar
Shaw, J. (1985). Peristome structure in the Mitteniales (ord. nov.: Musci), a neglected novelty. Systematic Botany, 10, 224–33.CrossRefGoogle Scholar
Shaw, J. & Anderson, L. E. (1988). Peristome development in mosses in relation to systematics and evolution. II. Tetraphis pellucida (Tetraphidaceae). American Journal of Botany, 75, 1019–32.CrossRefGoogle Scholar
Shaw, A. J. & Goffinet, B. (2000). Molecular evidence of reticulate evolution in the peatmosses (Sphagnum), including S. ehyalinum sp. nov. Bryologist, 103, 357–74.CrossRefGoogle Scholar
Shaw, A. J., Anderson, L. E. & Mishler, B. D. (2000). Paedomorphic sporophyte development in Bruchia flexuosa (Bruchiaceae). Bryologist, 103, 147–55.CrossRefGoogle Scholar
Shaw, J., Mishler, B. D. & Anderson, L. E. (1989a). Peristome development in mosses in relation to systematics and evolution. III. Funaria hygrometrica, Bryum pseudocapillare, and B. bicolor. Systematic Botany, 14, 24–36.CrossRefGoogle Scholar
Shaw, J., Mishler, B. D. & Anderson, L. E. (1989b). Peristome development in mosses in relation to systematics and evolution. IV. Haplolepideae: Ditrichaceae and Dicranaceae. Bryologist, 92, 314–25.CrossRefGoogle Scholar
Shaw, A. J., Cox, C. J., Goffinet, B., Buck, W. R. & Boles, S. B. (2003). Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution, 57, 2226–41.CrossRefGoogle Scholar
Smith, D. K. & Davison, P. G. (1993). Antheridia and sporophytes in Takakia ceratophylla (Mitt.) Grolle: Evidence for reclassification among the mosses. Journal of the Hattori Botanical Laboratory, 73, 263–71.Google Scholar
Snider, J. A. (1975). Sporophyte development in the genus Archidium (Musci). Journal of the Hattori Botanical Laboratory, 39, 85–104.Google Scholar
Springer, E. (1935). Über apogame (vegetativ enstandene) Sporogone an der bivalenten Rasse des LaubmoosesPhascum cuspidatum. Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 69, 249–62.Google Scholar
Stahl, E. (1876). Über künstlich hervorgerufene Protonemabildung an dem Sporogonium der Laubmoose. Botanische Zeitung, 34, 689–95.Google Scholar
Stark, L. R. (2001). Widespread sporophyte abortion following summer rains in Mojave Desert populations of Grimmia orbicularis. Bryologist, 104, 115–25.CrossRefGoogle Scholar
Stark, L. R. (2002). Phenology and its repercussions on the reproductive ecology of mosses. Bryologist, 105, 204–18.CrossRefGoogle Scholar
Stark, L. R. (2005). Do the sexes of the desert moss Syntrichia caninervis differ in desiccation tolerance? A leaf regeneration assay. International Journal of Plant Sciences, 166, 21–9.CrossRefGoogle Scholar
Stark, L. R., McLetchie, D. N. & Mishler, B. D. (2005). Sex expression, plant size, and spatial segregation of the sexes across a stress gradient in the desert mossSyntrichia caninervis. Bryologist, 108, 183–93.CrossRefGoogle Scholar
Stetler, D. A. & DeMaggio, A. E. (1976). Ultrastructural characteristics of spore germination in the moss Dawsonia superba. American Journal of Botany, 63, 438–42.CrossRefGoogle Scholar
Strother, P. K., Wood, G. D., Taylor, W. A. & Beck, J. H. (2004). Middle-Cambrian cryptospores and the origin of land plants. Memoirs of the Association of Australian Palaeontologists 29, 99–113.Google Scholar
Tanahashi, T., Sumikawa, N., Kato, M. & Hasebe, M. (2005). Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the mossPhyscomitrella patens. Development, 132, 1727–36.Google ScholarPubMed
Touw, A. (1962). Revision of the moss-genus Neckeropsis (Neckeraceae) I. Asiatic and Pacific species. Blumea, 11, 373–425.Google Scholar
Tsubota, H., DeLuna, E., González, D., Ignatov, M. S. & Deguchi, H. (2004). Molecular phylogenetics and ordinal relationships based on analyses of a large-scale data set of 600 rbcL sequences of mosses. Hikobia, 14, 149–70.Google Scholar
Une, K. (1985). Sexual dimorphism in the Japanese species of Macromitrium (Musci: Orthotrichaceae). Journal of the Hattori Botanical Laboratory, 59, 487–513.Google Scholar
Vanderpoorten, A., Goffinet, B., Hedenäs, L., Cox, C. J. & Shaw, A. J. (2003). A taxonomic reassessment of the Vittiaceae (Hypnales, Bryopsida): evidence from phylogenetic analyses of combined chloroplast and nuclear sequence data. Plant Systematics and Evolution, 241, 1–12.CrossRefGoogle Scholar
Vitt, D. H. (1968). Sex determination in mosses. Michigan Botanist, 7, 195–203.Google Scholar
Vitt, D. H. (1981). Adaptive modes of the sporophyte. Bryologist, 84, 166–86.CrossRefGoogle Scholar
Vitt, D. H. (1984). Classification of the Bryopsida. In New Manual of Bryology, vol. 2, ed. Schuster, R. M., pp. 696–759. Nichinan: Hattori Botanical Laboratory.Google Scholar
Vitt, D. H. & Glime, J. M. (1984). Structural adaptations of aquatic Musci. Lindbergia, 10, 95–110.Google Scholar
Walther, K. (1983). Bryophytina. Laubmoose. In A. Engler's Syllabus der Pflanzenfamilien. Aufl. 13, vol. 2, ed. Gerloff, J. & Poelt, J.. Berlin: Gebrüder Bornträger.Google Scholar
Wellman, C. H. & Gray, J. (2000). The microfossil record of early land plants. Philosophical Transactions of the Royal Society of London, B355, 717–32.CrossRefGoogle ScholarPubMed
Wellman, C. H., Osterloff, P. L. & Mohiuddin, U. (2003). Fragments of the earliest land plants. Nature, 425, 282–4.CrossRefGoogle ScholarPubMed
Wettstein, F. (1925). Genetische Untersuchungen an Moosen (Musci und Hepaticae). Bibliographia Genetica, 1, 1–38.Google Scholar
Wenderoth, H. (1931). Beiträge zur Kenntniss des Sporophyten von Polytrichum juniperinum Willdenow. Planta, 14, 344–85.CrossRefGoogle Scholar
Whigglesworth, G. (1947). Reproduction in Polytrichum commune L. and the significance of the rhizoid system. Transactions of the British Bryological Society, 1, 4–13.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1966). The occurrence of tubers in European mosses. Transactions of the British Bryological Society, 5, 103–16.CrossRefGoogle Scholar
Wyatt, R. & Anderson, L. E. (1984). Breeding systems in bryophytes. In The Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 39–64. London: Academic Press.Google Scholar
Yang, R.-D., Mao, J.-R., Zhang, W.-H., Jiang, L.-J. & Gao, H. (2004). Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili formation in Guizhou Province, China. Acta Botanica Sinica, 46, 180–5.Google Scholar
Zander, R. H. (1993). Genera of the Pottiaceae: mosses of harsh environments. Bulletin of the Buffalo Society of Natural Sciences, 32, 1–378 + i–vi.Google Scholar
Zander, R. H. (2006). The Pottiaceae s. str. as an evolutionary Lazarus taxon. Journal of the Hattori Botanical Laboratory, 100, 581–600.Google Scholar
Zander, R. H. (2008). Statistical evaluation of the clade “Rhabdoweisiaceae.”Bryologist, 111, 292–301.CrossRefGoogle Scholar
Zanten, B. O. (1974). The hygroscopic movement of the leaves of Dawsonia and some other Polytrichaceae. Bulletin de la Société Botanique de France, 121, 63–6.CrossRefGoogle Scholar
Zastrow, E. (1934). Experimentelle Studien über die Anpassung von Wasser – und Sumpfmoosen. Pflanzenforschung, 17, 1–70.Google Scholar
Zielinski, F. (1909). Beiträge zur Biologie des Archegoniums und der Haube der Laubmoose. Flora, 100, 1–36.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×