Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Morphology and classification of the Marchantiophyta
- 2 Morphology, anatomy, and classification of the Bryophyta
- 3 New insights into morphology, anatomy, and systematics of hornworts
- 4 Phylogenomics and early land plant evolution
- 5 Mosses as model organisms for developmental, cellular, and molecular biology
- 6 Physiological ecology
- 7 Biochemical and molecular mechanisms of desiccation tolerance in bryophytes
- 8 Mineral nutrition and substratum ecology
- 9 The structure and function of bryophyte-dominated peatlands
- 10 Population and community ecology of bryophytes
- 11 Bryophyte species and speciation
- 12 Conservation biology of bryophytes
- Index
- References
2 - Morphology, anatomy, and classification of the Bryophyta
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Morphology and classification of the Marchantiophyta
- 2 Morphology, anatomy, and classification of the Bryophyta
- 3 New insights into morphology, anatomy, and systematics of hornworts
- 4 Phylogenomics and early land plant evolution
- 5 Mosses as model organisms for developmental, cellular, and molecular biology
- 6 Physiological ecology
- 7 Biochemical and molecular mechanisms of desiccation tolerance in bryophytes
- 8 Mineral nutrition and substratum ecology
- 9 The structure and function of bryophyte-dominated peatlands
- 10 Population and community ecology of bryophytes
- 11 Bryophyte species and speciation
- 12 Conservation biology of bryophytes
- Index
- References
Summary
Introduction
With approximately 13 000 species, the Bryophyta compose the second most diverse phylum of land plants. Mosses share with the Marchantiophyta and Anthocerotophyta a haplodiplobiontic life cycle that marks the shift from the haploid-dominated life cycle of the algal ancestors of embryophytes to the sporophyte-dominated life cycle of vascular plants. The gametophyte is free-living, autotrophic, and almost always composed of a leafy stem. Following fertilization a sporophyte develops into an unbranched axis bearing a terminal spore-bearing capsule. The sporophyte remains physically attached to the gametophyte and is at least partially physiologically dependent on the maternal plant. Recent phylogenetic reconstructions suggest that three lineages of early land plants compose an evolutionary grade that spans the transition to land and the origin of plants with branched sporophytes (see Chapter 4). The Bryophyta seem to occupy an intermediate position: their origin predates the divergence of the ancestor to the hornworts and vascular plants but evolved from a common ancestor with liverworts (Qiu et al. 2006). The origin of the earliest land plants can be traced back to the Ordovician and maybe the Cambrian (Strother et al. 2004). Although unambiguous fossils of mosses have only been recovered from sediments dating from younger geological periods (Upper Carboniferous), divergence time estimates based on molecular phylogenies suggest that the origin of mosses dates back to the Ordovician (Newton et al. 2007) and thus that their unique evolutionary history spans at least 400 million years.
- Type
- Chapter
- Information
- Bryophyte Biology , pp. 55 - 138Publisher: Cambridge University PressPrint publication year: 2008
References
- 11
- Cited by