Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T10:38:33.334Z Has data issue: false hasContentIssue false

16 - Acute lymphoblastic leukemia

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Ching-Hon Pui
Affiliation:
Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Childhood acute lymphoblastic leukemia (ALL) has served as a model for cancer treatment for approximately five decades. With more precise diagnostic criteria and risk classifications, more effective therapy administered in controlled clinical trials, and better supportive care, the outlook for children with ALL has improved dramatically. Today, approximately 80% of children treated for this disease in developed countries will be cured (no evidence of disease for 10 or more years). Remarkably, this high cure rate is achieved mainly by optimizing risk-directed therapy, using the drugs that were discovered before 1980. Because of the ease with which samples of leukemic lymphoblasts can be obtained from the bone marrow and blood, laboratory studies of childhood ALL have consistently been at the fore of efforts to elucidate the principles of cancer cell biology. This chapter attempts to integrate advances in the biological understanding of ALL with basic principles of clinical management.

Pathobiology and pathophysiology

Leukemic transformation of hematopoietic cells requires subversion of the controls of normal proliferation, a block in differentiation, resistance to apoptotic signals, and enhanced self-renewal. The prevailing theory of leukemia pathophysiology is that a single mutant hematopoietic progenitor cell, capable of indefinite self-renewal, gives rise to malignant, poorly differentiated hematopoietic precursors. Several lines of research support the clonal origin of leukemia, including glucose-6-phosphate dehydrogenase enzyme studies and recombinant DNA analysis based on X-linked restriction fragment length polymorphisms in heterozygous females (whose normal tissues have a mosaic pattern of X-chromosome expression, yet whose leukemic cells show a single active parental allele).

Type
Chapter
Information
Childhood Leukemias , pp. 439 - 472
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jemal, A., Murray, T., Samuels, A., et al.Cancer statistics 2003. CA Cancer J Clin 2003; 53: 5–26.CrossRefGoogle ScholarPubMed
Pui, C.-H., Relling, M. V., & Downing, J. R.Acute lymphoblastic leukemia. N Engl J Med, 2004; 350: 1535–48.CrossRefGoogle ScholarPubMed
Pui, C.-H., Raskind, W. H., Kitchingman, G. R., et al.Clonal analysis of childhood acute lymphoblastic leukemia with “cytogenetically independent” cell populations. J Clin Invest, 1989; 83: 1971–7.CrossRefGoogle ScholarPubMed
Gale, R. E. & Wainscoat, J. S.Annotation: clonal analysis using X-linked DNA polymorphisms. Br J Haematol, 1993; 85: 2–8.CrossRefGoogle Scholar
Waldmann, T. A., Davis, M. M., Bongiovanni, K. F., et al.Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms. N Engl J Med, 1985; 313: 776–83.CrossRefGoogle Scholar
Raskind, W. H. & Fialkow, P. J.The use of cell markers in the study of human hematopoietic neoplasia. Adv Cancer Res, 1987; 49: 127–67.CrossRefGoogle Scholar
Gilliland, D. G. & Tallman, M. S.Focus on acute leukemias. Cancer Cell, 2002; 1: 417–20.CrossRefGoogle ScholarPubMed
Ernst, P., Wang, J., & Korsmeyer, S. J.The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol, 2002; 9: 282–7.CrossRefGoogle ScholarPubMed
Speck, N. A. & Gilliland, D. G.Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer, 2002; 2: 502–13.CrossRefGoogle ScholarPubMed
Sherr, C. J. & McCormick, F.The RB and p53 pathways in cancer. Cancer Cell, 2002; 2: 103–12.CrossRefGoogle Scholar
Krug, U., Ganser, A., & Koeffler, H. P.Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene, 2002; 21: 3475–95.CrossRefGoogle ScholarPubMed
Chau, B. N. & Wang, J. Y.Coordinated regulation of life and death by RB. Nat Rev Cancer, 2003; 3: 130–8.CrossRefGoogle ScholarPubMed
Greaves, M., Maia, A. T., Wiemels, J. L., & Ford, A. M.Leukemia in twins: lessons in natural history. Blood, 2003; 102: 2321–33.CrossRefGoogle ScholarPubMed
Greaves, M. F. & Wiemels, J.Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer, 2003; 3: 639–49.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al.Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–503.CrossRefGoogle ScholarPubMed
Taub, J. W., Konrad, M. A., Ge, Y., et al.High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood, 2002; 99: 2992–6.CrossRefGoogle ScholarPubMed
Greaves, M.Childhood leukaemia. BMJ, 2002; 324: 283–7.CrossRefGoogle ScholarPubMed
Mori, H., Colman, S. M., Xiao, Z., et al.Chromosome translocations and covert leukemia clones are generated during normal fetal development. Proc Natl Acad Sci U S A, 2002; 99: 8242–7.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Leonard, B. C., Wang, Y., et al.Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 2002; 99: 15 101–6.CrossRefGoogle Scholar
Pui, C.-H., Relling, M. V.Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol, 2000; 109: 13–23.CrossRefGoogle ScholarPubMed
Biondi, A., Cimino, G., Pieters, R., & Pui, C.-H.Biological and therapeutic aspects of infant leukemia. Blood, 2000; 96: 24–33.Google ScholarPubMed
Alexander, F. E., Patheal, S. L., Biondi, A., et al.Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res, 2001; 61: 2542–6.Google ScholarPubMed
Pui, C.-H., Campana, D., & Evans, W. E.Childhood acute lymphoblastic leukaemia – current status and future perspectives. Lancet Oncol, 2001; 2: 597–607.CrossRefGoogle ScholarPubMed
Liberzon, E., Avigad, S., Stark, B., et al.Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes Chromosomes Cancer, 2004; 39: 161–6.CrossRefGoogle ScholarPubMed
Chen, C.-L., Liu, Q., Pui, C.-H., et al.Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood, 1997; 89: 1701–7.Google ScholarPubMed
Krajinovic, M., Labuda, D., Richer, C., et al.Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 polymorphisms. Blood, 1999; 93: 1496–501.Google Scholar
Krajinovic, M., Sinnett, H., Richer, C., Labuda, D., & Sinnett, D.Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer, 2002; 97: 230–6.CrossRefGoogle ScholarPubMed
Smith, M. T., Wang, Y., Skibola, C. F., et al.Low NAD(P)H: quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children. Blood, 2002; 100: 4590–3.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Smith, R. N., Taylor, G. M., et al.Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtype of childhood acute leukemia. Proc Natl Acad Sci U S A, 2001; 98: 4004–9.CrossRefGoogle Scholar
Krajinovic, M., Lamothe, S., Labuda, D., et al.Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood, 2004; 103: 252–7.CrossRefGoogle ScholarPubMed
Skibola, C. F., Smith, M. T., Hubbard, A., et al.Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood, 2002; 99: 3786–91.CrossRefGoogle ScholarPubMed
Thompson, J. R., Gerald, P. F., Willoughby, M. L. N., & Armstrong, B. K.Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet, 2001; 358: 1935–40.CrossRefGoogle ScholarPubMed
Golub, T. R., Slonim, D. K., Tamayo, P., et al.Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999; 286: 531–7.CrossRefGoogle ScholarPubMed
Hampton, G. M. & Frierson, H. F. Jr.Classifying human cancer by analysis of gene expression. Trends Mol Med, 2003; 9: 5–10.CrossRefGoogle ScholarPubMed
McManus, M. T. & Sharp, P. A.Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002; 3: 737–47.CrossRefGoogle ScholarPubMed
Cui, J. W., Wang, J., He, K., et al.Proteomic analysis of human acute leukemia cells: insight into their classification, Clin Cancer Res, 2004; 10: 6887–96.CrossRefGoogle ScholarPubMed
Cristea, I. M., Gaskell, S. J., & Whetton, A. D.Proteomics techniques and their application to hematology. Blood, 2004; 103: 3624–34.CrossRefGoogle ScholarPubMed
Saunders, E. F., Lampkin, B. C., & Mauer, A. M.Variation of proliferative activity in leukemic cell populations of patients with acute leukemia. J Clin Invest, 1967; 46: 1356–63.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Sancho, J., Hancock, M. L., et al.Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood, 2002; 100: 2399–402.CrossRefGoogle ScholarPubMed
Kosmidis, H. V., Lusher, J. M., Shope, T. C., et al.Infections in leukemic children: a prospective analysis. J Pediatr, 1980; 96: 814–19.CrossRefGoogle ScholarPubMed
Jonsson, O. G., Sartain, P., Ducore, J. M., et al.Bone pain as an initial symptom of childhood acute lymphoblastic leukemia: association with nearly normal hematologic indexes. J Pediatr, 1990; 117: 233–7.CrossRefGoogle ScholarPubMed
Pui, C.-H., Stass, S., & Green, A.Bone marrow necrosis in children with malignant disease. Cancer, 1985; 56: 1522–5.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Bunin, N., Rivera, G., Goode, F., et al.Ocular relapse in the anterior chamber in childhood acute lymphoblastic leukemia. J Clin Oncol, 1987; 5: 299–303.CrossRefGoogle ScholarPubMed
Lo Curto, M., D'Angelo, P., Lumia, F., et al.Leukemic ophthalmopathy: a report of 21 pediatric cases. Med Pediatr Oncol, 1994; 23: 8–13.CrossRefGoogle ScholarPubMed
Kim, T. H., Hargreaves, H. K., Chan, W. C., et al.Sequential testicular biopsies in childhood acute lymphocytic leukemia. Cancer, 1986; 57: 1038–41.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Gajjar, A., Ribeiro, R. C., Mahmoud, H. H., et al.Overt testicular disease at diagnosis is associated with high risk features and a poor prognosis in patients with childhood acute lymphoblastic leukemia. Cancer, 1996; 78: 2437–42.3.0.CO;2-0>CrossRefGoogle Scholar
Rivera, G. K., Pinkel, D., Simone, J. V., et al.Treatment of acute lymphoblastic leukemia. 30 years' experience at St. Jude Children's Research Hospital. N Engl J Med, 1993; 329: 1289–95.CrossRefGoogle ScholarPubMed
Schrappe, M., Reiter, A., Ludwig, W.-D., et al.Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood, 2000; 95: 3310–22.Google ScholarPubMed
Silverman, L. B., Declerck, L., Gelber, R. D., et al.Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia, 2000; 14: 2247–56.CrossRefGoogle Scholar
Pui, C.-H., Dahl, G. V., Hustu, M. O., et al.Epidural spinal cord compression as the initial finding in childhood acute leukemia and non-Hodgkin lymphoma. J Pediatr, 1985; 106: 788–92.CrossRefGoogle ScholarPubMed
Taylor, A. M. R., Metcalfe, J. A., & Thick, J., et al.Leukemia and lymphoma in ataxia telangiectasia. Blood, 1996; 87: 423–38.Google ScholarPubMed
Loeb, D. M., Lederman, H. M., & Winkelstein, J. A.Lymphoid malignancy as a presenting sign of ataxia-telangiectasia. J Ped Hematol Oncol, 2000; 22: 464–7.CrossRefGoogle ScholarPubMed
Sandoval, C. & Swift, M.Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol, 1998; 31: 491–7.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Bain, B. J.Review: eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome. Br J Haematol, 1996; 95: 2–9.Google ScholarPubMed
Huang, M. S. & Hasserjian, R. P.Case 19–2004: a 12-year-old boy with fatigue and eosinophilia. N Engl J Med, 2004; 350: 2604–12.CrossRefGoogle ScholarPubMed
La Starza, R., Trubia, M., Testoni, N., et al.Clonal eosinophils are a morphologic hallmark of ETV6/ABL1 positive acute myeloid leukemia. Haematologica, 2002; 87: 789–94.Google ScholarPubMed
Dubansky, A. S., Boyett, J. M., Falletta, J., et al.Isolated thrombocytopenia in children with acute lymphoblastic leukemia: a rare event in a Pediatric Oncology Group Study. Pediatrics, 1989; 84: 1068–71.Google Scholar
Beutler, E.Platelet transfusions: the 20,000/µL trigger. Blood, 1993; 81: 1411–13.Google ScholarPubMed
Blatt, J., Penchansky, L., & Horn, M.Thrombocytosis as a presenting feature of acute lymphoblastic leukemia in childhood. Am J Hematol, 1989; 31: 46–9.CrossRefGoogle ScholarPubMed
Ribeiro, R. C. & Pui, C.-H.The clinical and biological correlates of coagulopathy in children with acute leukemia. J Clin Oncol, 1986; 4: 1212–18.CrossRefGoogle ScholarPubMed
Pui, C.-H., Behm, F. G., Singh, B., et al.Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990; 75: 174–9.Google ScholarPubMed
Hasle, H., Heim, S., Schroeder, H., et al.Transient pancytopenia preceding acute lymphoblastic leukemia (pre-ALL). Leukemia, 1995; 9: 605–8.Google Scholar
Morley, A. A., Brisco, M. J., Rice, M., et al.Leukaemia presenting as marrow hypoplasia: molecular detection of the leukaemic clone at the time of initial presentation. Br J Haematol, 1997; 98: 940–44.CrossRefGoogle ScholarPubMed
Pui, C.-H., Dodge, R. K., Dahl, G. V., et al.Serum lactic dehydrogenase level has prognostic value in childhood acute lymphoblastic leukemia. Blood, 1985; 66: 778–82.Google ScholarPubMed
Neglia, J. P., Day, D. L., Swanson, T. V., et al.Kidney size at diagnosis of childhood acute lymphocytic leukemia: lack of prognostic significance for outcome. Am J Pediatr Hematol Oncol, 1988; 10: 296–300.CrossRefGoogle ScholarPubMed
Jones, D. P., Stapleton, F. B., Kalwinsky, D., et al.Renal dysfunction and hyperuricemia at presentation and relapse of acute lymphoblastic leukemia. Med Pediatr Oncol, 1990; 18: 283–6.CrossRefGoogle ScholarPubMed
McKay, C. & Furman, W. L.Hypercalcemia complicating childhood malignancies. Cancer, 1993; 72: 256–60.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Pui, C.-H. & Dodge, R. K.Serum transaminase level at diagnosis has no prognostic value in childhood acute lymphoblastic leukemia. Leukemia, 1987; 1: 571.Google ScholarPubMed
Kelleher, J. F., Monteleone, P. M., Steele, D. A., et al.Hepatic dysfunction as the presenting feature of acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 2001; 23: 117–21.CrossRefGoogle ScholarPubMed
Maruo, Y., Sato, H., Bamba, N., et al.Chemotherapy-induced unconjugated hyperbilirubinemia caused by a mutation of the bilirubin uridine-5′-diphosphate-glucuronosyltransferase gene. J Pediatr Hematol Oncol, 2001; 23: 45–7.CrossRefGoogle ScholarPubMed
Relling, M. V. & Dervieux, T.Pharmacogenetics and cancer therapy. Nat Rev, 2001; 1: 99–108.CrossRefGoogle ScholarPubMed
Welch, J. C. & Lilleyman, J. S.Immunoglobulin concentrations in untreated lymphoblastic leukemia. Pediatr Hematol Oncol, 1995; 12: 545–9.CrossRefGoogle ScholarPubMed
Ingram, L., Rivera, G. K., & Shapiro, D. N.Superior vena cava syndrome associated with childhood malignancy: analysis of 24 cases. Med Pediatr Oncol, 1990; 18: 476–81.CrossRefGoogle ScholarPubMed
Müller, H. L., Horwitz, A. E., & Kühl, J.Acute lymphoblastic leukemia with severe skeletal involvement: a subset of childhood leukemia with a good prognosis. Pediatr Hematol Oncol, 1998; 15: 121–33.CrossRefGoogle ScholarPubMed
Ribeiro, R. C., Pui, C.-H., & Schell, M. J.Vertebral compression fracture as a presenting feature of acute lymphoblastic leukemia in children. Cancer, 1988; 61: 589–92.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Pui, C.-H., Mahmoud, H. H., Rivera, G. K., et al.Early intensification of intrathecal chemotherapy virtually eliminates central nevous system relapse in children with acute lymphoblastic leukemia. Blood, 1998; 92: 411–15.Google Scholar
Mastrangelo, R., Poplack, D., Bleyer, A., et al.Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol, 1986; 14: 191–4.CrossRefGoogle ScholarPubMed
Mahmoud, H. H., Rivera, G. K., Hancock, M. L., et al.Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med, 1993; 329: 314–19.CrossRefGoogle ScholarPubMed
Lauer, S., Shuster, J., Kirchner, P., et al.Prognostic significance of cerebrospinal fluid (CSF) lymphoblasts (LB) at diagnosis (dx) in children with acute lymphoblastic leukemia (ALL). Proc ASCO, 1994; 13: 317.Google Scholar
Gilchrist, G. S., Tubergen, D. G., Sather, H. N., et al.Low numbers of CSF blasts at diagnosis do not predict for the development of CNS leukemia in children with intermediate-risk acute lymphoblastic leukemia: a Children's Cancer Group report. J Clin Oncol, 1994; 12: 2594–600.CrossRefGoogle ScholarPubMed
Berg, H., Vet, R., Ouden, E., et al.Significance of lymphoblasts in cerebrospinal fluid in newly diagnosed pediatric acute lymphoblastic malignancies with bone marrow involvement: possible benefit of dexamethasone. Med Pediatr Oncol, 1995; 25: 22–7.CrossRefGoogle ScholarPubMed
Bürger, B., Zimmermann, M., Mann, G., et al.Diagnostic cerebrospinal fluid (CSF) examination in children with acute lymphoblastic leukemia (ALL): significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol, 2003; 21: 184–88.CrossRefGoogle ScholarPubMed
Pui, C.-H.Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol, 2003; 21: 179–81.CrossRefGoogle ScholarPubMed
Vilmer, E., Suciu, S., Ferster, A., et al.Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: A CLCG-EORTC report. Leukemia, 2000; 14: 2257–66.CrossRefGoogle ScholarPubMed
Nachman, J., Cherlow, J., Sather, H. N., et al.Effect of initial central nervous system (CNS) status on event-free survival (EFS) in children and adolescents with acute lymphoblastic leukemia (ALL). Med Pediatr Oncol, 2002; 39: 277, abstract SL 035.Google Scholar
Gajjar, A., Harrison, P. L., Sandlund, J. T., et al.Traumatic lumbar puncture leukemia at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 3381–4.Google ScholarPubMed
Howard, S. C., Gajjar, A. J., Cheng, C., et al.Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. JAMA, 2002; 228: 2001–7.CrossRefGoogle Scholar
Blaney, S. M., Poplack, D. G., Godwin, K., et al.Effect of body position on ventricular CSF methotrexate concentration following intralumbar administration. J Clin Oncol, 1995; 13: 177–9.CrossRefGoogle ScholarPubMed
Tubergen, D. G., Cullen, J. W., Boyett, J. M., et al.Blasts in CSF with a normal cell count do not justify alteration of therapy for acute lymphoblastic leukemia in remission: a Children's Cancer Group study. J Clin Oncol, 1994; 12: 273–8.CrossRefGoogle ScholarPubMed
Pui, C.-H., Behm, F. G., & Crist, W. M.Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood, 1993; 82: 343–62.Google ScholarPubMed
Reiter, A., Schrappe, M., Tiemann, M., et al.Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood, 1999; 94: 3294–306.Google ScholarPubMed
Patte, C., Auperin, A., Michon, J., et al.The Société Française d'Oncologie Pédiatrique LMB98 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood, 2001; 97: 3370–9.CrossRefGoogle ScholarPubMed
Hunger, S. P.Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood, 1996; 87: 1211–24.Google ScholarPubMed
Pui, C.-H., Raimondi, S. C., Hancock, M. L., et al.Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol, 1994; 12: 2601–6.CrossRefGoogle ScholarPubMed
Koehler, M., Behm, F. G., Shuster, J., et al.Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia, 1993; 7: 2064–8.Google ScholarPubMed
Uckun, F. M., Sensel, M. G., Sun, L., et al.Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood, 1998; 91: 735–46.Google ScholarPubMed
Ferrando, A. A. & Look, A. T.Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol, 2003; 40: 274–80.CrossRefGoogle ScholarPubMed
Goldberg, J. M., Silverman, L. B., Levy, D. E., et al.Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol, 2003; 21: 3616–22.CrossRefGoogle ScholarPubMed
Pui, C.-H.Recent advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc, 2004; 103: 85–95.Google ScholarPubMed
Smith, L. J., Curtis, J. E., Messner, H. A., et al.Lineage infidelity in acute leukemia. Blood, 1983; 61: 1138–45.Google ScholarPubMed
Pui, C.-H., Dahl, G. V., Melvin, S., et al.Acute leukaemia with mixed lymphoid and myeloid phenotype. Br J Haematol, 1984; 56: 121–30.CrossRefGoogle ScholarPubMed
Pui, C.-H., Raimondi, S. C., Head, D. R., et al.Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood, 1991; 78: 1327–37.Google ScholarPubMed
Borkhardt, A., Cazzaniga, G., Viehmann, S., et al.Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Blood, 1997; 90: 571–7.Google ScholarPubMed
Baruchel, A., Cayuela, J. M., Ballerini, P., et al.The majority of myeloid-antigen positive (My+) childhood B-cell precursor acute lymphoblastic leukemias express TEL-AML1 fusion transcripts. Br J Haematol, 1997; 99: 101–6.CrossRefGoogle ScholarPubMed
Pui, C.-H., Rubnitz, J. E., Hancock, M. L., et al.Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemic. J Clin Oncol, 1998; 16: 3768–73.CrossRefGoogle Scholar
Pui, C.-H. & Campana, D.New definition of remission in childhood acute lymphoblastic leukemia. Leukemia, 2000; 14: 783–5.CrossRefGoogle ScholarPubMed
Szczepanski, T., Orfão, A., & Velden, V. H. J.Minimal residual disease in leukaemia patients. Lancet Oncol, 2001; 2: 409–17.CrossRefGoogle ScholarPubMed
Björlund, E., Mazur, J., Söderhäll, S., et al.Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia, 2003; 17: 138–48.CrossRefGoogle Scholar
Campana, D.Determination of minimal residual disease in leukaemia patients. Br J Haematol, 2003; 121: 823–38.CrossRefGoogle ScholarPubMed
Pui, C.-H., Sandlund, J. T., Pei, D., et al.Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA, 2003; 290: 2001–7.CrossRefGoogle ScholarPubMed
Pui, C.-H., Raimondi, S. C., Dodge, R. K., et al.Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (>50 chromosomes) acute lymphoblastic leukemia. Blood, 1989; 73: 1963–7.Google ScholarPubMed
Synold, T. W., Relling, M. V., Boyett, J. M., et al.Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest, 1994; 94: 1996–2001.CrossRefGoogle ScholarPubMed
Kaspers, G. J. L., Smets, L. A., Pieters, R., et al.Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood, 1995; 85: 751–6.Google ScholarPubMed
Kumagai, M., Manabe, A., Pui, C.-H., et al.Stroma-supported culture of childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. J Clin Invest, 1996; 97: 755–60.CrossRefGoogle ScholarPubMed
Trueworthy, R., Shuster, J., Look, T., et al.Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 1992; 10: 606–13.CrossRefGoogle ScholarPubMed
Belkov, V. M., Krynetski, E. Y., Schuetz, J. D., et al.Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood, 1999; 93: 1643–50.Google Scholar
Gaynon, P. S., Trigg, M. E., Heerema, N. A., et al.Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia, 2000; 14: 223–33.CrossRefGoogle ScholarPubMed
Maloney, K. W., Shuster, J. J., Murphy, S., Pullen, J., Camitta, B. A.Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia, 2000; 14: 2276–85.CrossRefGoogle ScholarPubMed
Moorman, A. V., Richards, S. M., Martineau, M., et al.Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood, 2003; 102: 2756–62.CrossRefGoogle ScholarPubMed
Pui, C. H., Carroll, A. J., Raimondi, S. C., et al.Clinical presentation, karotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid <45 line. Blood, 1990; 75: 1170–7.Google ScholarPubMed
Harrison, C. J., Moorman, A. V., Broadfield, Z. J., et al.Three distinct subgroups of hypodiploidy in childhood acute lymphoblastic leukaemia. Br J Haematol, 2004; 125: 552–9.CrossRefGoogle Scholar
Ferrando, A. A. & Look, A. T.Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol, 2000; 37: 381–95.CrossRefGoogle ScholarPubMed
Harrison, C. J.The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev, 2001; 15: 49–59.CrossRefGoogle ScholarPubMed
Mrózek, K., Heerema, N. A., & Bloomfield, C. D.Cytogenetics in acute leukemia. Blood Rev, 2004; 18: 115–36.CrossRefGoogle ScholarPubMed
Behrendt, H., Charrin, C., Gibbons, B., et al.Dicentric (9;12) in acute lymphocytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia, 1995; 9: 102–6.Google ScholarPubMed
Aricò, M., Valsecchi, M. G., Camitta, B., et al.Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Eng J Med, 2000; 342: 998–1006.CrossRefGoogle ScholarPubMed
Pui, C.-H., Gaynon, P. S., Boyett, J. M., et al.Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.CrossRefGoogle ScholarPubMed
Pui, C.-H., Chessells, J. M., Camitta, B., et al.Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia, 2003; 17: 700–6.CrossRefGoogle ScholarPubMed
Loh, M. L. & Rubnitz, J. E.TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol, 2002; 9: 345–52.CrossRefGoogle ScholarPubMed
Ramakers-van Woerden, N. L., Pieters, R., Loonen, A. H., et al.TEL-AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 1094–9.Google ScholarPubMed
Stams, W. A. G., Boer, M. L., Beverloo, H. B., et al.Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood, 2003; 101: 2743–7.CrossRefGoogle ScholarPubMed
Harewood, L., Robinson, H., Harris, R., et al.Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia, 2003; 17: 547–53.CrossRefGoogle ScholarPubMed
Robinson, H. M., Broadfield, Z. J., Cheung, K. L., et al.Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia, 2003; 17: 2249–50.CrossRefGoogle ScholarPubMed
Behm, F. G., Raimondi, S. C., Frestedt, J. L., et al.Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood, 1996; 87: 2870–7.Google ScholarPubMed
DiMartino, J. F. & Cleary, M. L.MLL rearrangements in haematologic malignancies: lessons from clinical and biological studies. Br J Haematol, 1999; 106: 614–26.CrossRefGoogle ScholarPubMed
Silvermann, L. B., McLean, T. W., Gelber, R. D., et al.Intensified therapy for infants with acute lymphoblastic leukemia. Results from the Dana-Farber Cancer Institute Consortium. Cancer, 1997; 80: 2285–95.3.0.CO;2-Q>CrossRefGoogle Scholar
Stam, R. W., Boer, M. L., Meijerink, J. P. P., et al.Differential mRNA expression of Ara-C.metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood, 2003; 101: 1270–6.CrossRefGoogle ScholarPubMed
Perentesis, J. P., Bhatia, S., Boyle, E., et al.RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia, 2004; 18: 685–92.CrossRefGoogle ScholarPubMed
Tartaglia, M., Martinelli, S., Cazzaniga, G., et al.Genetic evidence for a lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood, 2004; 104: 307–13.CrossRefGoogle ScholarPubMed
Weng, A. P., Ferrando, A. A., Lee, W., et al.Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science, 2004; 306: 269–71.CrossRefGoogle ScholarPubMed
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.CrossRefGoogle ScholarPubMed
Cheok, M. H., Yang, W., Pui, C.-H., et al.Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet, 2003; 34: 85–90.CrossRefGoogle ScholarPubMed
Holleman, A., Cheok, M. H., Boer, M. L., et al.Gene expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med, 2004; 351: 533–42.CrossRefGoogle ScholarPubMed
Lugthart, S., Cheok, M. H., Boer, M. L., et al.Identification of genes associated with chemotherapy cross-resistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell, 2005; 7: 375–86.CrossRefGoogle Scholar
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al.HOX11L2 expression defines a clinical subtype of pediatric T.ALL associated with poor prognosis. Blood, 2002; 100: 991–7.CrossRefGoogle ScholarPubMed
Berger, R., Dastugue, N., Busson, M., et al.t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Group Français de Cytogénétique Hématologique (GFCH). Leukemia, 2003; 17: 1851–7.CrossRefGoogle Scholar
Cavé, H., Suciu, S., Preudhomme, C., et al.Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood, 2004; 103: 442–50.CrossRefGoogle Scholar
Armstrong, S. A., Kung, A. L., Mabon, M. E., et al.Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell, 2003; 3: 173–83.CrossRefGoogle ScholarPubMed
Levis, M. & Small, D.FLT3: ITDoes matter in leukemia. Leukemia, 2003; 17: 1738–52.CrossRefGoogle ScholarPubMed
Armstrong, S. A., Mabon, M. E., Silverman, L. B., et al.FLT3 mutations in childhood acute lymphoblastic leukemia. Blood, 2004; 103: 3544–6.CrossRefGoogle ScholarPubMed
Goldberg, J. M., Silverman, L. B., Levy, D. E., et al.Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol, 2003; 21: 3616–22.CrossRefGoogle ScholarPubMed
Nachman, J., Sather, H. N., Buckley, J. D., et al.Young adults 16–21 years of age at diagnosis entered on Children's Cancer Group acute lymphoblastic leukemia and acute myeloblastic leukemia protocols. Cancer, 1993; 71: 3377–85.3.0.CO;2-8>CrossRefGoogle Scholar
Pollock, B. H., DeBaun, M. R., Camitta, B. M., et al.Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol, 2000; 18: 813–23.CrossRefGoogle ScholarPubMed
Bhatia, S., Sather, H. N., Heerema, N. A., et al.Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood, 2002; 100: 1957–64.CrossRefGoogle ScholarPubMed
Kadan-Lottick, N. S., Ness, K. K., Bhatia, S., & Gurney, J. G.Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA, 2003; 290: 2008–14.CrossRefGoogle ScholarPubMed
Smith, M., Arthur, D., Camitta, B., et al.Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol, 1996; 14: 18–24.CrossRefGoogle ScholarPubMed
Pui, C.-H. & Evans, W. E.Acute lymphoblastic leukemia. N Eng J Med, 1998; 339: 605–15.CrossRefGoogle ScholarPubMed
Schrappe, M., Aricò, M., Harbott, J., et al.Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood, 1998; 92: 2730–41.Google ScholarPubMed
Diccianni, M. B., Yu, J., Hsiao, M., et al.Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood, 1994; 84: 3105–12.Google ScholarPubMed
Marks, D. I., Kurz, B. W., Link, M. P., et al.High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood, 1996; 87: 1155–61.Google ScholarPubMed
Marks, D. I., Kurz, B. W., Link, M. P., et al.Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J Clin Oncol, 1997; 15: 1158–62.CrossRefGoogle ScholarPubMed
Omura-Minamisawa, M., Diccianni, M. B., Batova, A., et al.Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. Clin Cancer Res, 2000; 6: 1219–28.Google Scholar
Maloney, K. W., McGavran, M. L., Odom, L. F., & Hunger, S. P.Acquisition of p16INK4A and p15INK4B gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood, 1999; 93: 2380–5.Google Scholar
Carter, T. L., Watt, P. M., Kumar, R., et al.Hemizygous p16INK4A deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse. Blood, 2001; 97: 572–4.CrossRefGoogle ScholarPubMed
Dalle, J. H., Fournier, M., Nelken, B., et al.p16INK4a immunocytochemical analysis is an independent prognostic factor in childhood acute lymphoblastic leukemia. Blood, 2002; 99: 2620–3.CrossRefGoogle Scholar
Calero Moreno, T. M., Gustafsson, G., Garwicz, S., et al.Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia, 2002; 16: 2037–45.CrossRefGoogle ScholarPubMed
Einsiedel, H. G., Taube, T., Hartmann, R., et al.Deletion analysis of p16INKa and p15INKb in relapse childhood acute lymphoblastic leukemia. Blood, 2002; 99: 4629–31.CrossRefGoogle Scholar
Evans, W. E. & Relling, M. V.Moving towards individualized medicine with pharmacogenomics. Nature, 2004; 429: 464–8.CrossRefGoogle ScholarPubMed
Evans, W. E. & McLeod, H. L.Pharmacogenomics-drug disposition, drug targets, and side effects. N Eng J Med, 2003; 348: 538–49.CrossRefGoogle ScholarPubMed
Pui, C.-H., Relling, M. V., & Evans, W. E.Role of pharmacogenomics and pharmacodynamics in the treatment of acute lymphoblastic leukaemia. Best Practice Res Clin Haematol, 2003; 15: 741–56.CrossRefGoogle Scholar
Evans, W. E., Relling, M. V., Rodman, J. H., et al.Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Eng J Med, 1998; 338: 499–505.CrossRefGoogle ScholarPubMed
Relling, M. V., Hancock, M. L., Boyett, J. M., et al.Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood, 1999; 93: 2817–23.Google ScholarPubMed
Relling, M. V., Pui, C.-H., Sandlund, J. T., et al.Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukemia. Lancet, 2000; 356: 285–90.CrossRefGoogle Scholar
Relling, M. V., Hancock, M. L., Rivera, G. K., et al.Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Nat Cancer Inst, 1999; 91: 2001–8.CrossRefGoogle ScholarPubMed
Relling, M. V., Rubnitz, J. E., Rivera, G. K., et al.High incidence of secondary brain tumors after radiotherapy and antimetabolites. Lancet, 1999; 354: 34–9.CrossRefGoogle ScholarPubMed
Thomsen, J. B., Schr⊘der, H., Kristinsson, C., et al.Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells. Relation to thiopurine metabolism. Cancer, 1999; 86: 1080–6.3.0.CO;2-5>CrossRefGoogle Scholar
Relling, M. V., Yanishevski, Y., Nemec, J., et al.Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia, 1998; 12: 346–52.CrossRefGoogle ScholarPubMed
Rocha, J. C., Cheng, C., Liu, W., et al.Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood, 2005; 105: 4752–8.CrossRefGoogle ScholarPubMed
Gaynon, P. S., Desai, A. A., Bostrom, B. C., et al.Early response to therapy and outcome in childhood acute lymphoblastic leukemia. A review. Cancer, 1997; 80: 1717–26.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Riehm, H., Reiter, A., Schrappe, M., et al.The in vivo response on corticosteroid therapy as an additional prognostic factor in childhood acute lymphoblastic leukemia (therapy study ALL-BFM 83). Klin Padiatr, 1987; 199: 151–60.CrossRefGoogle Scholar
Schrappe, M., Reiter, A., Zimmermann, M., et al.Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia, 2000; 14: 2205–22.CrossRefGoogle Scholar
Panzer-Grümayer, E. R., Schneider, M., Panzer, S., et al.Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood, 2000; 95: 790–4.Google ScholarPubMed
Coustan-Smith, E., Sancho, J., Behm, F. G., et al.Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 2002; 100: 52–8.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Sancho, J., Hancock, M. L., et al.Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 2691–6.Google ScholarPubMed
Coustan-Smith, E., Behm, F. G., Sanchez, J., et al.Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet, 1998; 351: 550–4.CrossRefGoogle ScholarPubMed
Dongen, J. J. M., Seriu, T., Panzer-Grümayer, E. R., et al.Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 1998; 352: 1731–8.CrossRefGoogle ScholarPubMed
Liem, N. L. M., Papa, R. A., Milross, C. G., et al.Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood, 2004; 103: 3905–14.CrossRefGoogle ScholarPubMed
Kumagai, M., Manabe, A., Pui, C.-H., et al.Stroma-supported culture of childhood B-lineage acute lymphoblastic leukemic cells predicts treatment outcome. J Clin Invest, 1996; 97: 755–60.CrossRefGoogle ScholarPubMed
Shuster, J. J., Wacker, P., Pullen, J., et al.Prognostic significance of sex in childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol, 1998; 16: 2854–63.CrossRefGoogle ScholarPubMed
Pui, C.-H., Boyett, J. M., Relling, M. V., et al.Sex difference in prognosis for children with acute lymphoblastic leukemia. J Clin Oncol, 1999; 17: 818–24.CrossRefGoogle ScholarPubMed
Viana, M. B., Murao, M., Ramos, G., et al.Malnutrition as a prognostic factor in lymphoblastic leukaemia: a multivariate analysis. Arch Dis Child, 1994; 71: 304–10.CrossRefGoogle ScholarPubMed
Boer, M. L., Pieters, R., Kazemier, K. M., et al.Relationship between the intracellular daunorubicin concentration, expression of major vault protein/lung resistance protein and resistance to anthracyclines in childhood acute lymphoblastic leukemia. Leukemia, 1999; 13: 2023–30.CrossRefGoogle Scholar
Marie, J. P.Drug resistance in hematologic malignancies. Curr Opin Oncol, 2001; 13: 463–9.CrossRefGoogle ScholarPubMed
Steinbach, D., Wittig, S., Cario, G., et al.The multidrug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood, 2003; 102: 4493–8.CrossRefGoogle ScholarPubMed
Howard, S. C., Gajjar, A., Ribeiro, R. C., et al.Safety of lumbar puncture for children with acute lymphoblastic leukemia and thrombocytopenia. JAMA, 2000; 284: 2222–4.CrossRefGoogle ScholarPubMed
Pui, C.-H., Jackson, C. W., Chesney, C., et al.Sequential changes in platelet function and coagulation in leukemic children treated with L-asparaginase, prednisone, and vincristine. J Clin Oncol, 1983; 1: 380–5.CrossRefGoogle ScholarPubMed
Pui, C.-H., Mahmoud, H. H., Wiley, J. M., et al.Recombinant urate oxidase for the prophylaxis or treatment of hyperuricaemia in patients with leukaemia or lymphoma. J Clin Oncol, 2001; 19: 697–704.CrossRefGoogle ScholarPubMed
Goldman, S. C., Holcenberg, J. S., Finklestein, J. Z., et al.A randomised comparison between rasburicase and allopurinol in children with lymphoma or leukaemia at high risk for tumor lysis. Blood, 2001; 97: 2998–3003.CrossRefGoogle ScholarPubMed
Pui, C.-H.Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother, 2002; 3: 433–52.CrossRefGoogle ScholarPubMed
Pui, C.-H., Jeha, S., Irwin, D., & Camitta, B.Recombinant urate oxidase (rasburicase) in the prevention and treatment of malignancy-associated hyperuricemia in pediatric and adult patients: results of a compassionate-use trial. Leukemia, 2001; 15: 1505–9.CrossRefGoogle ScholarPubMed
Bunin, N. J. & Pui, C. H.Differing complications of hyperleukocytosis in children with acute lymphoblastic or acute nonlymphoblastic leukemia. J Clin Oncol, 1985; 3: 1590–5.CrossRefGoogle ScholarPubMed
Nelson, S. C., Bruggers, C. S., Kurtzberg, J., et al.Management of leukemic hyperleukocytosis with hydration, urinary alkalinization, and allopurinol. Are cranial irradiation and invasive cytoreduction necessary ?Am J Pediatr Hematol Oncol, 1993; 15: 351–5.Google ScholarPubMed
Lowe, E. J., Pui, C.-H., Hancock, M. H., et al.Early complications in children with acute lymphoblastic leukemia presenting with hyperleukocytosis. Pediatr Blood Cancer, 2005; 45: 10–15.CrossRefGoogle ScholarPubMed
Pui, C.-H., Boyett, J. M., Hughes, W. T., et al.Human granulocyte colony-stimulating factor after induction chemotherapy in children with acute lymphoblastic leukemia. N Engl J Med, 1997; 336: 1781–7.CrossRefGoogle ScholarPubMed
Heath, J. A., Steinherz, P. G., Altman, A., et al.Human granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia: a Children's Cancer Group Study. J Clin Oncol, 2003; 21: 1612–17.CrossRefGoogle ScholarPubMed
Relling, M. V., Boyett, J. M., Blanco, J. G., et al.Granulocyte-colony stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood, 2003; 101: 3862–7.CrossRefGoogle ScholarPubMed
Belfield, P. M. & Dwyer, A. A.Oral complications of childhood cancer and its treatment: current best practice. Eur J Cancer, 2004; 40: 1035–41.CrossRefGoogle ScholarPubMed
Silverman, L. B., Gelber, R. D., Dalton, V. K., et al.Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood, 2001; 97: 1211–18.CrossRefGoogle ScholarPubMed
Conter, V., Schrappe, M., Aricò, M., et al.Role of cranial radiotherapy for childhood T-cell acute lymphoblastic leukemia with high WBC count and good response to prednisone. J Clin Oncol, 1997; 15: 2786–91.CrossRefGoogle ScholarPubMed
Conter, V., Aricò, M., Valsecchi, M. G., et al.Intensive BFM chemotherapy for childhood ALL: interim analysis of the AIEOP-ALL 91 study. Haematologica, 1998; 83: 791–9.Google ScholarPubMed
Rizzari, C., Valsecchi, M. G., Aricò, M., et al.Effect of protracted high-dose L-asparaginase given as a second exposure in a Berlin-Frankfurt-Münster-based treatment: results of the randomized 9102 intermediate-risk childhood acute lymphoblastic leukemia study: a report from the Associazione Italiana Ematologia Oncologia Pediatrica. J Clin Oncol, 2001; 19: 1297–303.CrossRefGoogle Scholar
Conter, V., Aricò, M., Valsecchi, M. G., et al.Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) acute lymphoblastic leukemia studies, 1982–1995. Leukemia, 2000; 14: 2196–204.CrossRefGoogle ScholarPubMed
Aricò, M., Valsecchi, M. G., Conter, V., et al.Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone-poor response treated with double Berlin-Frankfurt-Munster protocol II. Blood, 2002; 100: 420–6.CrossRefGoogle Scholar
Nachman, J. B., Sather, H. N., Sensel, M. G., et al.Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med, 1998; 338: 1663–71.CrossRefGoogle Scholar
Lange, B. J., Bostrom, B. C., Cherlow, J. M., et al.Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 2002; 99: 825–33.CrossRefGoogle ScholarPubMed
Bostrom, B. C., Sensel, M. R., Sather, H. N., et al.Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood, 2003; 101: 3809–17.CrossRefGoogle ScholarPubMed
Harms, D. O. & Janka-Schaub, G. E.Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia, 2000; 14: 2234–9.CrossRefGoogle Scholar
Harms, D. O., Göbel, U., Spaar, H. J., et al.Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood, 2003; 102: 2736–40.CrossRefGoogle ScholarPubMed
Kamps, W. A., Bökkerink, J. P. M., Hakvoort-Cammel, F. G. A. A., et al.BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996). Leukemia, 2002; 16: 1099–111.CrossRefGoogle Scholar
Werff ten Bosch, , der, J., Suciu, S., Thyss, A., et al.Value of intravenous 6-mercaptopurine during continuation treatment in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma: final results of a randomized phase III trial (58881) of the EORTC CLG. Leukemia, 2005; 19: 721–6.CrossRefGoogle ScholarPubMed
Duval, M., Suciu, S., Ferster, A., et al.Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer – Children's Leukemia Group phase 3 trial. Blood, 2002; 99: 2734–9.CrossRefGoogle ScholarPubMed
Gustafsson, G., Schmiegelow, K., Forestier, E., et al.Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation. Leukemia, 2000; 14: 2267–75.CrossRefGoogle ScholarPubMed
Schmiegelow, K., Björk, O., Glomstein, A., et al.Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol, 2003; 21: 1332–9.CrossRefGoogle ScholarPubMed
Mahoney, D. H., Shuster, J., Nitschke, R., et al.Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: A Pediatric Oncology Group Phase III Trial. J Clin Oncol, 1998; 16: 246–54.CrossRefGoogle ScholarPubMed
Harris, M. B., Shuster, J. J., Pullen, J., et al.Treatment of children with early pre-B and pre-B acute lymphocytic leukemia with antimetabolite-based intensification regimens: A Pediatric Oncology Group Study. Leukemia, 2000; 14: 1570–6.CrossRefGoogle ScholarPubMed
Mahoney, D. H. Jr., Shuster, J. J., Nitschke, R., et al.Intensification with intermediate-dose intravenous methotrexate is effective therapy for children with lower-risk B-precursor acute lymphoblastic leukemia: A Pediatric Oncology Group Study. J Clin Oncol, 2000; 18: 1285–94.CrossRefGoogle ScholarPubMed
Lauer, S. J., Shuster, J. J., Mahoney, D. H. Jr., et al.A comparison of early intensive methotrexate/mercaptopurine with early intensive alternating combination chemotherapy for high-risk B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group phase III randomized trial. Leukemia, 2001; 15: 1038–45.CrossRefGoogle ScholarPubMed
Pui, C.-H., Boyett, J. M., Rivera, G. K., et al.Long-term results of Total Therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St. Jude Children's Research Hospital. Leukemia, 2000; 14: 2286–94.CrossRefGoogle ScholarPubMed
Dervieux, T., Brenner, T. L., Hon, Y. Y., et al.De novo purine synthesis inhibition and antileukemic effects of mercaptopurine alone or in combination with methotrexate in vivo. Blood, 2002; 100: 1240–7.CrossRefGoogle ScholarPubMed
Tsuchida, M., Ikuta, K., Hanada, R., et al.Long-term follow-up of childhood acute lymphoblastic leukemia in Tokyo Children's Cancer Study Group 1981–1995. Leukemia, 2000; 14: 2295–306.CrossRefGoogle Scholar
Toyoda, Y., Manabe, A., Tsuchida, M., et al.Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol, 2000; 18: 1508–16.CrossRefGoogle ScholarPubMed
Eden, O. B., Harrison, G., Richards, S., et al.Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–1997. Leukemia, 2000; 14: 2307–20.CrossRefGoogle ScholarPubMed
Wheeler, K. A., Richards, S. M., Bailey, C. C., et al.Bone marrow transplantation versus chemotherapy in the treatment of very high-risk childhood acute lymphoblastic leukemia in first remission: results from Medical Research Council UKALL X and Ⅺ. Blood, 2000; 96: 2412–18.Google ScholarPubMed
Hann, J., Vora, A., Richards, S., et al.Benefit of intensified treatment for all children with acute lymphoblastic leukaemia: results from MRC UKALL Ⅺ and MRC ALL97 randomised trials. Leukemia, 2000; 14: 356–63.CrossRefGoogle ScholarPubMed
Chessells, J. M., Harrison, G., Richards, S. M., et al.Failure of a new protocol to improve treatment results in paediatric lymphoblastic leukaemia: lessons from the UK Medical Research Council trials UKALL X and UKALL Ⅺ. Br J Haematol, 2002; 118: 445–55.CrossRefGoogle ScholarPubMed
Mitchell, C. D., Richards, S. M., Kinsey, S. E., et al.Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol, 2005; 129: 734–45.CrossRefGoogle ScholarPubMed
Pui, C.-H., Sallan, S., Relling, M. V., Masera, G., & Evans, W. E.International childhood acute lymphoblastic leukemia workshop: Sausalito, CA, 30 November-1 December 2000. Leukemia, 2001; 15: 707–15.CrossRefGoogle Scholar
Liang, D. C., Hung, I. J., Yang, C. P., et al.Unexpected mortality from the use of E. coli L-asparaginase during remission induction therapy for childhood acute lymphoblastic leukemia: a report from the Taiwan Pediatric Oncology Group. Leukemia, 1999; 13: 155–60.CrossRefGoogle ScholarPubMed
Vieira Pinheiro, J. P. & Boos, J.The best way to use asparaginase in childhood acute lymphatic leukaemia – still to be defined ?Br J Haematol, 2004; 125: 117–27.CrossRefGoogle Scholar
Asselin, B. L., Whitin, J. C., Coppola, D. J., et al.Comparative phamarcokinetic studies of three asparaginase preparations. J Clin Oncol, 1993; 11: 1780–6.CrossRefGoogle ScholarPubMed
Silverman, L. B., Dalton, V. K., Zhou, G., et al.Erwinia asparaginase is less toxic than E. coli asparaginase in children with acute lymphoblastic leukemia: results from the Dana Farber Cancer Institute ALL Consortium. Blood, 1999; 94(Suppl. 1): 290a.Google Scholar
Abshire, T. C., Pollock, B. H., Billett, A. L., et al.Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood, 2000; 96: 1709–15.Google ScholarPubMed
Avramis, V. I., Sencer, S., Periclou, A. P., et al.A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood, 2002; 99: 1986–94.CrossRefGoogle ScholarPubMed
Asselin, B. L., Kreissman, S., Coppola, D. J., et al.Prognostic significance of early response to a single dose of asparaginase in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol, 1999; 21: 6–12.CrossRefGoogle ScholarPubMed
Hak, L. J., Relling, M. V., Cheng, C., et al.Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia, 2004; 18: 1072–7.CrossRefGoogle ScholarPubMed
Balis, F. M., Lester, C. M., Chrousos, G. P., Heideman, R. L., & Poplack, D. G.Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol, 1987; 5: 202–7.CrossRefGoogle ScholarPubMed
Hurwitz, C. A., Silverman, L. B., Schorin, M. A., et al.Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer, 2000; 88: 1964–9.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Schwartz, C. L., Thompson, E. B., Gelber, R. D., et al.Improved response with higher corticosteroid dose in children with acute lymphoblastic leukemia. J Clin Oncol, 2001; 19: 1040–6.CrossRefGoogle ScholarPubMed
Lipshultz, S. E., Rifai, N., Dalton, V. M., et al.The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med, 2004; 351: 145–53.CrossRefGoogle ScholarPubMed
Tubergen, D. G., Gilchrist, G. S., O'Brien, R. T., et al.Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: a Children's Cancer Group Phase III Trial. J Clin Oncol, 1993; 11: 527–37.CrossRefGoogle ScholarPubMed
Pui, C.-H., Simone, J. V., Hancock, M. L., et al.Impact of three methods of treatment intensification on acute lymphoblastic leukemia in children: long-term results of St. Jude Total Therapy Study X. Leukemia, 1992; 6: 150–7.Google ScholarPubMed
Silverman, L. B., Gelber, R. D., Young, M. L., et al.Induction failure in acute lymphoblastic leukemia of childhood. Cancer, 1999; 85: 1395–404.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Appelbaum, F. R.Allogeneic hematopoietic stem cell transplantation for acute leukemia. Semin Oncol, 1997; 24: 114–23.Google ScholarPubMed
Bermudez, M., Fuster, J. L., Llinares, E., Galera, A., & Gonzalez, C.Itraconazole–related increased vincristine neurotoxicity: case report and review of literature. J Pediatr Hematol Oncol, 2005; 27: 389–92.CrossRefGoogle ScholarPubMed
Chauvenet, A. R., Shashi, V., Selsky, C., et al.Vincristine-induced neuropathy as the initial presentation of Charcot-Marie-Tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Pediatr Hematol Oncol, 2003; 25: 316–20.CrossRefGoogle ScholarPubMed
Moody, K., Charlson, M. E., & Finlay, J.The neutropenic diet: what's the evidence ?J Pediatr Hematol Oncol, 2002; 24: 717–21.CrossRefGoogle ScholarPubMed
Pui, C.-H., Burghen, G. A., Bowman, W. P., & Aur, R. J. A.Risk factors for hyperglycemia in children with leukemia receiving L-asparaginase and prednisone. J Pediatr, 1981; 99: 45–50.CrossRefGoogle ScholarPubMed
Pihko, H., Tyni, T., Virkola, K., et al.Transient ischemic cerebral lesions during induction chemotherapy for acute lymphoblastic leukemia. J Pediatr, 1993; 123: 718–24.CrossRefGoogle ScholarPubMed
Henze, G., Langermann, H.-J., Brämswig, J., et al.Results of study BFM 76/79 for treatment of acute lymphoblastic leukemia in childhood and adolescence. Klin Padiatr, 1981; 193: 145–54.CrossRefGoogle Scholar
Tubergen, D., Gilchrist, G., O'Brien, A., et al.Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features. J Clin Oncol, 1993; 11: 527–37.CrossRefGoogle ScholarPubMed
Hutchinson, R. J., Gaynon, P. S., Sather, H., et al.Intensification of therapy for children with lower-risk acute lymphoblastic leukemia: long-term follow-up of patients treated on Children's Cancer Group trial 1881. J Clin Oncol, 2003; 9: 1790–7.CrossRefGoogle Scholar
Amylon, M. D., Shuster, J., Pullen, J., et al.Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T-cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia, 1999; 13: 335–42.CrossRefGoogle ScholarPubMed
Kager, L., Cheok, M., Yan, W., et al.Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J. Clin Invest, 2005; 115: 110–7.CrossRefGoogle ScholarPubMed
Perez-Atayde, A. R., Sallan, S. E., Tedrow, U., et al.Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol, 1997; 150: 815–21.Google ScholarPubMed
Nishigaki, H., Ito, C., Manabe, A., et al.Prevalence and growth characteristics of malignant stem cells in B-lineage acute lymphoblastic leukemia. Blood, 1997; 89: 3735–44.Google ScholarPubMed
Aur, R. J. A., Simone, J., Hustu, H. O., et al.Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood, 1971; 37: 272–81.Google ScholarPubMed
Clarke, M., Gaynon, P., Hann, I., et al.CNS-directed therapy for childhood acute lymphoblastic leukaemia: Childhood All Collaborative Group overview of 43 randomised trials. J Clin Oncol, 2003; 21: 1798–809.CrossRefGoogle Scholar
Sullivan, M. P., Chen, T., Dyment, P. G., et al.Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood, 1982; 60: 948–58.Google Scholar
Pui, C.-H., Sandlund, J. T., Pei, D., et al.Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St. Jude Children's Research Hospital. Blood, 2004; 104: 2690–6.CrossRefGoogle ScholarPubMed
Stork, L. C., Sather, H., Hutchinson, R. J., et al.Comparison of mercaptopurine (MP) with thioguanine (TG) and IT methotrexate (ITM) with IT “Triples” (ITT) in children with SR-ALL: results of CCG-1952. Blood, 2002; 100: 156a.Google Scholar
Pui, C.-H., Cheng, C., Leung, W., et al.Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med, 2003; 349: 640–9.CrossRefGoogle ScholarPubMed
Laver, J. H., Barredo, J. C., Amylon, M., et al.Effects of cranial radiation in children with high risk T cell acute lymphoblastic leukemia: a Pediatric Oncology Group report. Leukemia, 2000; 14: 369–73.CrossRefGoogle Scholar
Manera, R., Ramirez, I., Mullins, J., & Pinkel, D.Pilot studies of species-specific chemotherapy of childhood acute lymphoblastic leukemia using genotype and immunophenotype. Leukemia, 2000; 14: 1354–61.CrossRefGoogle ScholarPubMed
Ritchey, A. K., Pollock, B. H., Lauer, S. J., et al.Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia; a Pediatric Oncology Group Study. J Clin Oncol, 1999; 17: 3745–52.CrossRefGoogle ScholarPubMed
Pui, C.-H., Relling, M. V., Sandlund, J. T., et al.Rationale and design of Total Therapy Study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann Hematol, 2004; 83(Suppl. 1): S124–6.Google ScholarPubMed
Waber, D. P., Silverman, L. B., Catania, L., et al.Outcomes of a randomized trial of hyperfractionated cranial radiation therapy for treatment of high-risk acute lymphoblastic leukemia: therapeutic efficacy and neurotoxicity. J Clin Oncol, 2004; 22: 2701–7.CrossRefGoogle ScholarPubMed
Riehm, H., Gadner, H., Henze, G., et al.Results and significance of six randomized trials in four consecutive ALL-BFM studies. Hematol Blood Transfus, 1990; 33: 439–50.Google ScholarPubMed
Childhood ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12,000 randomized children. Lancet, 1996; 347: 1783–8.CrossRef
Nesbit, M. E. Jr., Sather, H. N., Robison, L. L., et al.Randomized study of 3 years versus 5 years of chemotherapy in childhood acute lymphoblastic leukemia. J Clin Oncol, 1983; 1: 308–16.CrossRefGoogle ScholarPubMed
Miller, D. R., Leikin, S. L., Albo, V. C., et al.Three versus five years of maintenance therapy are equivalent in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Study Group. J Clin Oncol, 1989; 7: 316–25.CrossRefGoogle Scholar
Lennard, L.The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol, 1992; 43: 329–39.CrossRefGoogle ScholarPubMed
Teresi, M. E., Crom, W. R., Choi, K. E., et al.Methotrexate bioavailability after oral and intramuscular administration in children. J Pediatr, 1987; 110: 788–92.CrossRefGoogle ScholarPubMed
Lennard, L. & Lilleyman, J. S.Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol, 1989; 7: 1816–23.CrossRefGoogle ScholarPubMed
Lennard, L., Lilleyman, J. S., Loon, J., et al.Clinical practice. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet, 1990; 336: 225–9.CrossRefGoogle Scholar
Schmiegelow, K., Schr⊘der, H., Gustafsson, G., et al.Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. J Clin Oncol, 1995; 13: 345–51.CrossRefGoogle ScholarPubMed
Rivard, G. E., Infante-Rivard, C., Hoyoux, C., et al.Maintenance chemotherapy for childhood acute lymphoblastic leukaemia: better in the evening. Lancet, 1985; 2: 1264–6.CrossRefGoogle ScholarPubMed
Rivard, G. E., Lin, K. T., Leclerc, J. M., & David, M.Milk could decrease the bioavailability of 6-mercaptopurine. Am J Pediatr Hematol Oncol, 1989; 11: 402–6.Google ScholarPubMed
Chessells, J. M., Harrison, G., Lilleyman, J. S., et al.Continuing (maintenance) therapy in lymphoblastic leukaemia: lessons from MRC UKALL X. Br J Haematol, 1997; 98: 945–51.CrossRefGoogle ScholarPubMed
Evans, W. E., Horner, M., Chu, Y. Q., et al.Altered mercaptopurine metabolism, toxic effects and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr, 1991; 119: 985–9.CrossRefGoogle Scholar
Lennard, L., Gibson, B. E., Nicole, T., et al.Congenital thiopurine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukemia. Arch Dis Child, 1993; 69: 577–9.CrossRefGoogle Scholar
Stanulla, M., Schaeffeler, E., Flohr, T., et al.Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA, 2005; 293: 1485–9.CrossRefGoogle ScholarPubMed
Yates, C. R., Krynetski, E. Y., Loennechen, T., et al.Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med, 1997; 126: 608–14.CrossRefGoogle ScholarPubMed
Stoneham, S., Lennard, L., Coen, P., Lilleyman, J., & Saha, V.Veno-occlusive disease in patients receiving thiopurines during maintenance therapy for childhood acute lymphoblastic leukaemia. Br J Haematol, 2003; 123: 100–2.CrossRefGoogle ScholarPubMed
Winick, N., Bowman, W. P., & Kamen, B. A.Unexpected acute neurologic toxicity in the treatment of children with acute lymphoblastic leukemia. J Natl Cancer Inst, 1992; 84: 252–6.CrossRefGoogle ScholarPubMed
Mahoney, D. H., Shuster, J. J., Nitschke, R., et al.Acute neurotoxicity in children with B-precursor acute lymphoid leukemia: an association with intermediate-dose intravenous methotrexate and intrathecal triple therapy-a Pediatric Oncology Group study. J Clin Oncol, 1998; 16: 1712–22.CrossRefGoogle ScholarPubMed
Kalwinsky, D. K., Raimondi, S. C., Bunin, N. J., et al.Clinical and biological characteristics of acute lymphocytic leukemia in children with Down syndrome. Am J Med Genet Suppl, 1990; 7: 267–71.Google ScholarPubMed
Dördelmann, M., Schrappe, M., Reiter, A., et al.Down's syndrome in childhood acute lymphoblastic leukemia: clinical characteristics and treatment outcome in four consecutive BFM trials. Leukemia, 1998; 12: 645–51.CrossRefGoogle ScholarPubMed
Jackson, R. C.Biological effects of folic acid antagonists with antineoplastic activity. Pharmacol Ther, 1984; 25: 61–82.CrossRefGoogle ScholarPubMed
Baram, J., Allegra, C. J., Fine, R. L., et al.Effect of methotrexate on intracellular folate pools in purified myeloid precursor cells from normal human bone marrow. J Clin Invest, 1987; 79: 692–7.CrossRefGoogle ScholarPubMed
Kishi, S., Griener, J., Cheng, C., et al.Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clinic Oncol, 2003; 21: 3084–91.CrossRefGoogle ScholarPubMed
Mahoney, D. H. Jr., Camitta, B. M., Leventhal, B. G., et al.Repetitive low dose oral methotrexate and intravenous mercaptopurine treatment for patients with lower risk B-lineage acute lymphoblastic leukemia. A Pediatric Oncology Group Pilot study. Cancer, 1995; 75: 2623–31.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Farrow, A. C., Buchanan, G. R., Zwiener, R. J., Bowman, W. P., & Winick, N. J.Serum aminotransferase elevation during and following treatment of childhood acute lymphoblastic leukemia. J Clin Oncol, 1997; 15: 1560–6.CrossRefGoogle ScholarPubMed
Nygaard, U., Toft, N., & Schmiegelow, K.Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther, 2004; 75: 274–81.CrossRefGoogle ScholarPubMed
Bleyer, W. A., Sather, H. N., Nickerson, H. J., et al.Monthly pulses of vincristine and prednisone prevent bone marrow and testicular relapse in low-risk childhood acute lymphoblastic leukemia: a report of the CCG-161 study by the Children's Cancer Study Group. J Clin Oncol, 1991; 9: 1012–21.CrossRefGoogle Scholar
Mattano, L. A. Jr., Sather, H. N., Trigg, M. E., & Nachman, J. B.Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol, 2000; 18: 3262–72.CrossRefGoogle ScholarPubMed
Kaste, S. C., Jones-Wallace, D., Rose, S. R., et al.Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia, 2001; 15: 728–34.CrossRefGoogle ScholarPubMed
Strauss, A. J., Su, J. T., Kimball, Dalton V. M., et al.Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol, 2001; 19: 3066–72.CrossRefGoogle ScholarPubMed
Mattano, L. A., Sather, H. N., La, M. K., et al.Modified dexamethasone (DXM) reduces the incidence of treatment-related osteonecrosis (ON) in children and adolescents with higher risk acute lymphoblastic leukemia (HR ALL): a report of CCG-1961. Blood, 2003; 102: 221a.Google Scholar
Relling, M. V., Yang, W., Das, S., et al.Pharmacogenetics risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol, 2004; 22: 3930–6.CrossRefGoogle Scholar
Shaw, N. J. & Eden, O. B.Skin rash after completion of therapy for leukemia in childhood. Pediatr Hematol Oncol, 1989; 6: 31–5.CrossRefGoogle ScholarPubMed
McNall, R. Y., Head, D. R., Pui, C.-H., & Razzouk, B. I.Parvovirus B19 infection in a child with acute lymphoblastic leukemia during induction therapy. J Pediatr Hematol Oncol, 2001; 23: 309–11.CrossRefGoogle Scholar
Pui, C.-H., Kane, J. R., & Crist, W. M.Biology and treatment of infant leukemias. Leukemia, 1995; 9: 762–9.Google ScholarPubMed
Pui, C.-H., Ribeiro, R. C., Campana, D. C., et al.Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia, 1996; 10: 952–6.Google ScholarPubMed
Dördelmann, M., Reiter, A., Borkhardt, A., et al.Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood, 1999; 94: 1209–17.Google ScholarPubMed
Chessells, J. M., Harrison, C. J., Kempski, H., et al.Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC childhood leukaemia working party. Leukemia, 2002; 16: 776–84.CrossRefGoogle ScholarPubMed
Isaacs, H. Jr.Fetal and neonatal leukemia. J Pediatr Hematol Oncol., 2003; 25: 348–61.CrossRefGoogle ScholarPubMed
Pieters, R., Boer, M. L., Durian, M., et al.Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia, 1998; 12: 1344–8.CrossRefGoogle ScholarPubMed
Dreyer, Z. E., Steuber, C. P., Bowman, W. P., et al.High risk infant ALL-improved survival with intensive chemotherapy. Proc Am Soc Clin Oncol, 1998; 17: 529a.Google Scholar
Kosaka, Y., Koh, K., Kinukawa, N., et al.Infant acute lymphoblastic leukemia with MLL gene rearrangements: outcome following intensive chemotherapy and hematopoietic stem cell transplantation. Blood, 2004; 104: 3527–34.CrossRefGoogle ScholarPubMed
Sawyers, C. L.Finding the next Gleevec: FLT3 targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell, 2002; 1: 413–15.CrossRefGoogle ScholarPubMed
Hasle, H., Clemmensen, I. H., & Mikkelsen, M.Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet, 2000; 355: 165–9.CrossRefGoogle ScholarPubMed
Pui, C.-H., Raimondi, S. C., Borowitz, M. J., et al.Immunophenotypes and karyotypes of leukemic cells in children with Down syndrome and acute lymphoblastic leukemia. J Clin Oncol, 1993; 11: 1361–7.CrossRefGoogle ScholarPubMed
Zeller, B., Gustafsson, G., Forestier, E., et al.Acute leukaemia in children with Down syndrome: a population-based Nordic study. Br J Haematol, 2005; 128: 797–804.CrossRefGoogle ScholarPubMed
Zwaan, C. M., Kaspers, G. J. L., Pieters, R., et al.Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood, 2002; 99: 245–51.CrossRefGoogle ScholarPubMed
Lange, B.The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol, 2000; 110: 512–24.CrossRefGoogle ScholarPubMed
Ueland, P. M., Refsum, H., & Christensen, B.Methotrexate sensitivity in DS: a hypothesis. Cancer Chemother Pharmacol, 1990; 25: 384–6.CrossRefGoogle Scholar
Belkov, V. M., Krynetski, E. Y., Scheutz, J. D., et al.Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood, 1999; 93: 1643–50.Google Scholar
Lu, J., Getz, G., & Miska, E. A., et al.MicroRNA expression profiles classify human cancers. Nature, 2005; 435: 834–8.CrossRefGoogle ScholarPubMed
McManus, M. T. & Sharp, P. A.Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002; 3: 737–47.CrossRefGoogle ScholarPubMed
O'Brien, S. G., Guilhot, F., Larson, R. A., et al.Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med, 2003; 348: 994–1004.CrossRefGoogle ScholarPubMed
Druker, B. J., Sawyers, C. L., Kantarjian, H., et al.Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med, 2001; 344: 1038–42.CrossRefGoogle ScholarPubMed
Lee, S., Kim, D. W., Kim, Y. J., et al.Minimal residual disease-based role of imatinib as a first-line interim therapy prior to allogeneic stem cell transplantation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood, 2003; 102: 3068–70.CrossRefGoogle ScholarPubMed
Thomas, D. A., Faderl, S., Cortes, J., et al.Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood, 2004; 103: 4396–407.CrossRefGoogle ScholarPubMed
Wohlbold, L., Kuip, H., Miething, C., et al.Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib meslyate (STI571). Blood, 2003; 102: 2236–9.CrossRefGoogle Scholar
Graux, C., Cools, J., Melotte, C., et al.Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet, 2004; 10: 1084–9.CrossRefGoogle Scholar
Batova, A., Shao, L. E., Dicciani, M. B., et al.The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cells lines. Blood, 2002; 100: 3319–24.CrossRefGoogle Scholar
Melnick, A. & Licht, J. D.Histone deacetylase as therapeutic targets in hematologic malignancies. Curr Opin Hematol, 2002; 9: 322–32.CrossRefGoogle ScholarPubMed
Imai, C., Iwamoto, S., & Campana, D.Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood, 2005; 106: 376–83.CrossRefGoogle ScholarPubMed
Howard, S. C., Pedrosa, M., Lins, M., et al.Establishment of a pediatric oncology program and outcomes of childhood acute lymphoblastic leukemia in a resource-poor area. JAMA, 2004; 291: 2471–5.CrossRefGoogle Scholar
Pui, C.-H. & Ribeiro, R. C.International collaboration on childhood leukemia. Int J Hematol, 2003; 78: 383–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Acute lymphoblastic leukemia
    • By Ching-Hon Pui, Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Acute lymphoblastic leukemia
    • By Ching-Hon Pui, Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Acute lymphoblastic leukemia
    • By Ching-Hon Pui, Member and Director, Leukemia/Lymphoma Division, St. Jude Children's Research Hospital, American Cancer Society–F. M. Kirby Clinical Research Professor, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.017
Available formats
×