Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T21:22:55.573Z Has data issue: false hasContentIssue false

28 - Minimal residual disease

from Part III - Evaluation and treatment

Published online by Cambridge University Press:  01 July 2010

Dario Campana
Affiliation:
Member, Departments of Hematology/Oncology and Pathology, St. Jude Children's Research Hospital, Professor, Department of Pediatrics College of Medicine University of Tennessee Health Science Center, Memphis, TN, USA
Andrea Biondi
Affiliation:
Director, M. Tettamanti Research Center, Associate Professor, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
Jacques J. M. van Dongen
Affiliation:
Professor, Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

A multitude of clinical and biologic factors have been associated with a variable response to treatment in patients with acute leukemia, but their predictive power is far from absolute, and their usefulness for guiding clinical decisions in individual patients is inherently limited. Rather than predicting treatment response, in vivo measurements of leukemia cytoreduction provide direct information on the effectiveness of treatment in each patient. This information should have great clinical utility, but estimates by conventional morphologic techniques have a relatively low sensitivity and accuracy: in most cases, leukemic cells can be detected in bone marrow with certainty only when they constitute 5% or more of the total cell population. These limitations are overcome by methods for detecting minimal (i.e. submicroscopic) residual disease (MRD), which can be 100 times more sensitive than morphology and allow a more objective assessement of treatment response. The definition of “remission” in patients with acute leukemia by these methods is becoming the standard at many cancer centers.

Initial reservations regarding the clinical utility of MRD testing arose from concerns regarding the heterogeneous distribution of leukemia during clinical remission. Another concern was that MRD signals may not correspond to viable leukemic cells with the capacity for renewal. As discussed in this chapter, several correlative studies of MRD and treatment outcome have now firmly established that MRD studies can be highly informative.

The first MRD studies in patients with leukemia were made soon after antibodies for leukocyte differentiation antigens became available.

Type
Chapter
Information
Childhood Leukemias , pp. 679 - 706
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lowenberg, B., Downing, J. R., & Burnett, A.Acute myeloid leukemia. N Engl J Med, 1999; 341: 1051–62.CrossRefGoogle ScholarPubMed
Pui, C. H., Campana, D., & Evans, W. E.Childhood acute lymphoblastic leukemia – current status and future perspectives. Lancet Oncol, 2001; 2: 597–607.CrossRefGoogle ScholarPubMed
Mathe, G., Schwarzenberg, L., Mery, A. M., et al.Extensive histological and cytological survey of patients with acute leukaemia in “complete remission”. Br Med J, 1966; 5488: 640–2.CrossRefGoogle Scholar
Martens, A. C., Schultz, F. W., & Hagenbeek, A.Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood, 1987; 70: 1073–8.Google ScholarPubMed
Bradstock, K. F., Janossy, G., Tidman, N., et al.Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res, 1981; 5: 301–9.CrossRefGoogle ScholarPubMed
Mancini, M., Cedrone, M., Diverio, D., et al.Use of dual-color interphase FISH for the detection of inv(16) in acute myeloid leukemia at diagnosis, relapse and during follow-up: a study of 23 patients. Leukemia, 2000; 14: 364–8.CrossRefGoogle ScholarPubMed
Bielorai, B., Golan, H., Trakhtenbrot, L., et al.Combined analysis of morphology and fluorescence in situ hybridization in follow-up of minimal residual disease in a child with Philadelphia-positive acute lymphoblastic leukemia. Cancer Genet Cytogenet, 2002; 138: 64–8.CrossRefGoogle Scholar
Estrov, Z., Grunberger, T., Dube, I. D., Wang, Y. P., & Freedman, M. H.Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission. N Engl J Med, 1986; 315: 538–42.CrossRefGoogle ScholarPubMed
Uckun, F. M., Kersey, J. H., Haake, R., et al.Pretransplantation burden of leukemic progenitor cells as a predictor of relapse after bone marrow transplantation for acute lymphoblastic leukemia. N Engl J Med, 1993; 329: 1296–301.CrossRefGoogle ScholarPubMed
Saiki, R. K., Scharf, S., Faloona, F., et al.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985; 230: 1350–4.CrossRefGoogle ScholarPubMed
White, T. J., Arnheim, N., & Erlich, H. A.The polymerase chain reaction. Trends Genet, 1989; 5: 185–9.CrossRefGoogle ScholarPubMed
Breit, T. M., Beishuizen, A., Ludwig, W. D., et al.tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia, 1993; 7: 2004–11.Google ScholarPubMed
Pongers-Willemse, M. J., Seriu, T., Stolz, F., et al.Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Leukemia, 1999; 13: 110–8.CrossRefGoogle Scholar
Carlotti, E., Pettenella, F., Amaru, R., et al.Molecular characterization of a new recombination of the SIL/TAL-1 locus in a child with T-cell acute lymphoblastic leukaemia. Br J Haematol, 2002; 118: 1011–8.CrossRefGoogle Scholar
Akasaka, T., Muramatsu, M., Ohno, H., et al.Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood, 1996; 88: 985–94.Google ScholarPubMed
Reichel, M., Gillert, E., Breitenlohner, I., et al.Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Leukemia, 2001; 15: 286–8.CrossRefGoogle Scholar
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al.Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–503.CrossRefGoogle ScholarPubMed
Basso, K., Frascella, E., Zanesco, L., & Rosolen, A.Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt's lymphomas. Am J Pathol, 1999; 155: 1479–85.CrossRefGoogle Scholar
Boeckx, N., Jansen, M. W., Haskovec, C., et al.Identification of e19a2 BCR-ABL fusions (μ-BCR breakpoints) at the DNA level by ligation-mediated PCR. Leukemia, 2005; 19: 1292–5.CrossRefGoogle ScholarPubMed
Dongen, J J., Macintyre, E. A., Gabert, J. A., et al.Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia, 1999; 1: 1901–28.CrossRefGoogle Scholar
Sklar, J.Polymerase chain reaction: the molecular microscope of residual disease. J Clin Oncol, 1991; 9: 1521–4.CrossRefGoogle ScholarPubMed
Saiki, R. K., Gelfand, D. H., Stoffel, S., et al.Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988; 239: 487–91.CrossRefGoogle ScholarPubMed
Szczepanski, T., Orfao, A., Velden, V., San Miguel, J. F., & Dongen, J. J.Minimal residual disease in leukaemia patients. Lancet Oncol, 2001; 2: 409–17.CrossRefGoogle ScholarPubMed
Cazzaniga, G., Rossi, V., & Biondi, A.Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol, 2002; 15: 21–35.CrossRefGoogle ScholarPubMed
Cross, N. C.Quantitative PCR techniques and applications. Br J Haematol, 1995; 89: 693–7.CrossRefGoogle ScholarPubMed
Velden, V., Hochhaus, A., Cazzaniga, G., et al.Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia, 2003; 17: 1013–34.CrossRefGoogle ScholarPubMed
Lion, T.Current recommendations for positive controls in RT-PCR assays. Leukemia, 2001; 15: 1033–7.CrossRefGoogle ScholarPubMed
Gessler, M., Poustka, A., Cavenee, W., et al.Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature, 1990; 343: 774–8.CrossRefGoogle ScholarPubMed
Niegemann, E., Wehner, S., Kornhuber, B., Schwabe, D., & Ebener, U.wt1 gene expression in childhood leukemias. Acta Haematol, 1999; 102: 72–6.CrossRefGoogle ScholarPubMed
Bergmann, L., Maurer, U., & Weidmann, E.Wilms tumor gene expression in acute myeloid leukemias. Leuk Lymphoma, 1997; 25: 435–43.CrossRefGoogle ScholarPubMed
Bergmann, L., Miething, C., Maurer, U., et al.High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood, 1997; 90: 1217–25.Google ScholarPubMed
Tamaki, H., Ogawa, H., Ohyashiki, K., et al.The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia, 1999; 13: 393–9.CrossRefGoogle ScholarPubMed
Bader, P., Niemeyer, C. M., Weber, G., et al.WT1 gene expression: marker for minimal residual disease (MRD) in childhood MDS and JMML [abstract]. Blood, 2002; 100: 371a.Google Scholar
Cilloni, D., Gottardi, E., Messa, F., et al.Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol, 2003; 21: 1988–95.CrossRefGoogle ScholarPubMed
Nakao, M., Janssen, J. W., Erz, D., Seriu, T., & Bartram, C. R.Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia, 2000; 14: 522–4.CrossRefGoogle ScholarPubMed
Kondo, M., Horibe, K., Takahashi, Y., et al.Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol, 1999; 33: 525–9.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Kottaridis, P. D., Gale, R. E., Frew, M. E., et al.The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001; 98: 1752–9.CrossRefGoogle ScholarPubMed
Iwai, T., Yokota, S., Nakao, M., et al.Internal tandem duplication in the juxtatransmembrane domain of the flt3 is not involved in blastic crisis of chronic myeloid leukemia. Leukemia, 1997; 11: 1992–3.Google Scholar
Xu, F., Taki, T., Yang, H. W., et al.Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol, 1999; 105: 155–62.CrossRefGoogle ScholarPubMed
Meshinchi, S., Woods, W. G., Stirewalt, D. L., et al.Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood, 2001; 97: 89–94.CrossRefGoogle ScholarPubMed
Arrigoni, P., Beretta, C., Silvestri, D., et al.FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol, 2003; 120: 89–92.CrossRefGoogle ScholarPubMed
Zwaan, C. M., Meshinchi, S., Radich, J. P., et al.FLT3 internal tandem duplication in 234 children with acute myeloid leukemia (AML): prognostic significance and relation to cellular drug resistance. Blood, 2003; 102: 2387–94.CrossRefGoogle ScholarPubMed
Kiyoi, H., Naoe, T., Yokota, S., et al.Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia, 1997; 11: 1447–52.CrossRefGoogle Scholar
Noguera, N. I., Breccia, M., Divona, M., et al.Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia, 2002; 16: 2185–9.CrossRefGoogle ScholarPubMed
Cazzaniga, G., Beretta, C., Gaipa, G., et al.Molecular analysis of clonal evolution in a pediatric case by RQ-PCR of FLT3/ITD [abstract]. Hematol J, 2002; 4: 32a.Google Scholar
Kottaridis, P. D., Gale, R. E., Langabeer, S. E., et al.Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood, 2002; 100: 2393–8.CrossRefGoogle ScholarPubMed
Shih, L. Y., Huang, C. F., Wu, J. H., et al.Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood, 2002; 100: 2387–92.CrossRefGoogle ScholarPubMed
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al.A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–504.CrossRefGoogle Scholar
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al.HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood, 2002; 100: 991–7.CrossRefGoogle ScholarPubMed
Steinbach, D., Hermann, J., Viehmann, S., Zintl, F., & Gruhn, B.Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet, 2002; 133: 118–23.CrossRefGoogle ScholarPubMed
Matsushita, M., Yamazaki, R., & Kawakami, Y.Quantitative analysis of PRAME for detection of minimal residual disease in leukemia. Methods Mol Med, 2004; 97: 267–75.Google ScholarPubMed
Watari, K., Tojo, A., Nagamura-Inoue, T., et al.Identification of a melanoma antigen, PRAME, as a BCR/ABL-inducible gene. FEBS Lett, 2000; 46: 367–71.CrossRefGoogle Scholar
Dongen, J J. & Wolvers-Tettero, I. L.Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta, 1991; 198: 1–91.CrossRefGoogle Scholar
Tonegawa, S.Somatic generation of antibody diversity. Nature, 1983; 302: 575–81.CrossRefGoogle ScholarPubMed
Davis, M. M. & Bjorkman, P. J.T-cell antigen receptor genes and T-cell recognition. Nature, 1988; 334: 395–402.CrossRefGoogle ScholarPubMed
Szczepanski, T., Flohr, T., Velden, V., Bartram, C. R., & Dongen, J. J.Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol, 2002; 15: 37–57.CrossRefGoogle ScholarPubMed
Dongen, J J. van, Szczepanski, T., & Adriaansen H J. Immunobiology of leukemia. In , E. S. Henderson, , T. A. Lister, & , M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 2002), pp. 85–129.Google Scholar
Langerak, A. W., Szczepanski, T., Burg, M., Wolvers-Tettero, I. L., & Dongen, J. J.Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia, 1997; 11: 2192–9.CrossRefGoogle ScholarPubMed
Delabesse, E., Burtin, M. L., Millien, C., et al.Rapid, multifluorescent TCRG Vgamma and Jgamma typing: application to T cell acute lymphoblastic leukemia and to the detection of minor clonal populations. Leukemia, 2000; 14: 1143–52.CrossRefGoogle Scholar
Dongen, J J. & Wolvers-Tettero, I. L.Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta, 1991; 198: 93–174.CrossRefGoogle Scholar
Beishuizen, A., Verhoeven, M. A., Mol, E. J., et al.Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1993; 7: 2045–53.Google ScholarPubMed
Beishuizen, A., Hahlen, K., Hagemeijer, A., et al.Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia, 1991; 5: 657–67.Google ScholarPubMed
Tumkaya, T., Burg, M., Garcia Sanz, R., et al.Immunoglobulin lambda isotype gene rearrangements in B cell malignancies. Leukemia, 2001; 15: 121–7.CrossRefGoogle ScholarPubMed
Burg, M., Barendregt, B. H., Szczepanski, T., et al.Immunoglobulin light chain gene rearrangements display hierarchy in absence of selection for functionality in precursor-B-ALL. Leukemia, 2002; 16: 1448–53.CrossRefGoogle ScholarPubMed
Szczepanski, T., Willemse, M. J., Wering, E R., et al.Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia, 2001; 15: 1415–23.CrossRefGoogle Scholar
Siminovitch, K. A., Bakhshi, A., Goldman, P., & Korsmeyer, S. J.A uniform deleting element mediates the loss of kappa genes in human B cells. Nature, 1985; 316: 260–2.CrossRefGoogle ScholarPubMed
Seriu, T., Hansen-Hagge, T. E., Stark, Y., & Bartram, C. R.Immunoglobulin kappa gene rearrangements between the kappa deleting element and Jkappa recombination signal sequences in acute lymphoblastic leukemia and normal hematopoiesis. Leukemia, 2000; 14: 671–4.CrossRefGoogle ScholarPubMed
Felix, C. A., Wright, J. J., Poplack, D. G., et al.T cell receptor alpha-, beta-, and gamma-genes in T cell and pre-B cell acute lymphoblastic leukemia. J Clin Invest, 1987; 80: 545–56.CrossRefGoogle Scholar
Szczepanski, T., Beishuizen, A., Pongers-Willemse, M. J., et al.Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia, 1999; 13: 196–205.CrossRefGoogle ScholarPubMed
Bierings, M., Szczepanski, T., Wering, E R., et al.Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol, 2001; 113: 757–62.CrossRefGoogle Scholar
Langerak, A. W., Wolvers-Tettero, I. L., Beemd, M. W., et al.Immunophenotypic and immunogenotypic characteristics of TCRgammadelta+ T cell acute lymphoblastic leukemia. Leukemia, 1999; 13: 206–14.CrossRefGoogle ScholarPubMed
Yokota, S., Hansen-Hagge, T. E., & Bartram, C. R.T-cell receptor delta gene recombination in common acute lymphoblastic leukemia: preferential usage of V delta 2 and frequent involvement of the J alpha cluster. Blood, 1991; 77: 141–8.Google ScholarPubMed
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E F., et al.Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease. Blood, 1995; 86: 692–702.Google ScholarPubMed
Szczepanski, T., Langerak, A. W., Wolvers-Tettero, I. L., et al.Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia, 1998; 12: 1081–8.CrossRefGoogle Scholar
Brumpt, C., Delabesse, E., Beldjord, K., et al.The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood, 2000; 96: 2254–61.Google ScholarPubMed
Velden, V., Szczepanski, T., & Wijkhuijs, A. J.Age-related patterns of immunoglobulin and T cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia, 2003; 17: 1834–44.CrossRefGoogle Scholar
Peham, M., Panzer, S., Fasching, K., et al.Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Br J Haematol, 2002; 117: 315–21.CrossRefGoogle Scholar
Beishuizen, A., De Bruijn, M. A., Pongers-Willemse, M. J., et al.Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: a new molecular target for detection of minimal residual disease. Leukemia, 1997; 11: 2200–7.CrossRefGoogle Scholar
Dongen, J J., Comans-Bitter, W. M., Wolvers-Tettero, I. L., & Borst, J.Development of human T lymphocytes and their thymus-dependency. Thymus, 1990; 16: 207–34.Google Scholar
Breit, T. M., Wolvers-Tettero, I. L., Beishuizen, A., et al.Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood, 1993; 82: 3063–74.Google ScholarPubMed
Szczepanski, T., Langerak, A. W., Willemse, M. J., et al.T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia reflect ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia, 2000; 14: 1208–14.CrossRefGoogle Scholar
Langerak, A. W., Wolvers-Tettero, I. L., & Dongen, J. J.Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia, 1999; 13: 965–74.CrossRefGoogle Scholar
Dongen, J J., Langerak, A. W., & Bruggemann, M.Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene combinations in suspect lymphoproliferations. Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia, 2003; 17: 2257–317.CrossRefGoogle Scholar
Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., et al.Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood, 1999; 93: 4079–85.Google ScholarPubMed
Adriaansen, H. J., Soeting, P. W., Wolvers-Tettero, I. L., & Dongen, J. J.Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. Leukemia, 1991; 5: 744–51.Google Scholar
Schmidt, C. A., Oettle, H., Neubauer, A., et al.Rearrangements of T-cell receptor delta, gamma and beta genes in acute myeloid leukemia coexpressing T-lymphoid features. Leukemia, 1992; 6: 1263–7.Google ScholarPubMed
Sanchez, I., San, Miguel, J F., Corral, J., et al.Gene rearrangement in acute non-lymphoblastic leukaemia: correlation with morphological and immunophenotypic characteristics of blast cells. Br J Haematol, 1995; 89: 104–9.CrossRefGoogle ScholarPubMed
Boeckx, N., Willemse, M. J., Szczepanski, T., et al.Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia, 2002; 16: 368–75.CrossRefGoogle ScholarPubMed
Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., & Dongen, J. J.Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol, 1999; 246: 205–13.Google ScholarPubMed
Kitchingman, G. R.Immunoglobulin heavy chain gene VH-D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood, 1993; 81: 775–82.Google ScholarPubMed
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E F., Borne, A. E. von dem, & Schoot, C. E. van der.Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood, 1993; 82: 581–9.Google ScholarPubMed
Szczepanski, T., Willemse, M. J., Kamps, W. A., et al.Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol, 2001; 36: 352–8.CrossRefGoogle ScholarPubMed
Szczepanski, T., Willemse, M. J., Brinkhof, B., et al.Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 2002; 99: 2315–23.CrossRefGoogle Scholar
Beishuizen, A., Verhoeven, M. A., Wering, E R., et al.Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood, 1994; 83: 2238–47.Google ScholarPubMed
Steward, C. G., Goulden, N. J., Katz, F., et al.A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood, 1994; 83: 1355–62.Google ScholarPubMed
Taylor, J. J., Rowe, D., Kylefjord, H., et al.Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia, 1994; 8: 60–6.Google ScholarPubMed
Velden, V., Willemse, M. J., Schoot, C. E., et al.Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia, 2002; 16: 928–36.CrossRefGoogle ScholarPubMed
Dongen, J J., Seriu, T., Panzer-Grumayer, E. R., et al.Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 1998; 352: 1731–8.CrossRefGoogle ScholarPubMed
Szczepanski, T., Velden, V. H., & Raff, T.Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of secondary T-ALL. Leukemia, 2003; 17: 2149–56.CrossRefGoogle Scholar
Knechtli, C. J. C., Goulden, N. J., Hancock, J. P., et al.Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood, 1998; 92: 4072–9.Google ScholarPubMed
Velden, V. H. van der, Szczepanski, T., & Dongen, J J. van. Polymerase chain reaction, real-time quantitative. In , S. Brenner & , J. H. Miller, eds., Encyclopedia of Genetics (London: Academic Press, 2001), pp. 1503–6.Google Scholar
Verhagen, O. J., Willemse, M. J., Breunis, W. B., et al.Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia, 2000; 14: 1426–35.CrossRefGoogle ScholarPubMed
Langerak, A. W., Wolvers-Tettero, I. L., Gastel-Mol, E. J., Oud, M. E., & Dongen, J. J. van.Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood, 2001; 98: 2456–65.CrossRefGoogle ScholarPubMed
Velden, V. H., Wijkhuijs, J. M., Jacobs, D. C., Wering, E. R., & Dongen, J. J. van.T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia, 2002; 16: 1372–80.CrossRefGoogle ScholarPubMed
Wering, E. R., Linden-Schrever, B. E., Velden, V., Szczepanski, T., & Dongen, J. J. van.T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia, 2001; 15: 1301–3.CrossRefGoogle ScholarPubMed
Dongen, J. J., Breit, T. M., Adriaansen, H. J., Beishuizen, A., & Hooijkaas, H.Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia, 1992; 6(Suppl. 1): 47–59.Google ScholarPubMed
Campana, D., Coustan-Smith, E., & Janossy, G.The immunologic detection of minimal residual disease in acute leukemia. Blood, 1990; 76: 163–71.Google ScholarPubMed
Farahat, N., Morilla, A., Owusu-Ankomah, K., et al.Detection of minimal residual disease in B-lineage acute lymphoblastic leukaemia by quantitative flow cytometry. Br J Haematol, 1998; 101: 158–64.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Sancho, J., Hancock, M. L., et al.Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 2691–6.Google ScholarPubMed
San Miguel, J. F., Vidriales, M. B., Lopez-Berges, C., et al.Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood, 2001; 98: 1746–51.CrossRefGoogle ScholarPubMed
Dworzak, M. N., Froschl, G., Printz, D., et al.Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood, 2002; 99: 1952–8.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Sancho, J., Behm, F. G., et al.Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 2002; 100: 52–8.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Sancho, J., Hancock, M. L., et al.Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood, 2002; 100: 2399–402.CrossRefGoogle ScholarPubMed
Howard, S C., Campana, D., & Coustan-Smith, E., et al.Development of a regional flow cytometry center for diagnosis of childhood leukemia in Central America. Leukemia, 2005; 19: 323–5.CrossRefGoogle ScholarPubMed
Wells, D. A., Sale, G. E., Shulman, H. M., et al.Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation. Am J Clin Pathol, 1998; 110: 84–94.CrossRefGoogle ScholarPubMed
Sang, B. C., Shi, L., Dias, P., et al.Monoclonal antibodies specific to the acute lymphoblastic leukemia t(1;19)-associated E2A/pbx1 chimeric protein: characterization and diagnostic utility. Blood, 1997; 89: 2909–14.Google Scholar
Paolucci, P., Hayward, A. R., & Rapson, N. T.Pre-B and B cells in children on leukaemia remission maintenance treatment. Clin Exp Immunol, 1979; 37: 259–66.Google Scholar
Longacre, T. A., Foucar, K., Crago, S., et al.Hematogones: a multiparameter analysis of bone marrow precursor cells. Blood, 1989; 73: 543–52.Google ScholarPubMed
Caldwell, C. W., Poje, E., Helikson, M. A.B-cell precursors in normal pediatric bone marrow. Am J Clin Pathol, 1991; 95: 816–23.CrossRefGoogle ScholarPubMed
Lucio, P., Parreira, A., Beemd, M. W., et al.Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B- ALL. Leukemia, 1999; 13: 419–27.CrossRefGoogle ScholarPubMed
Asma, G. E., Bergh, R. L., & Vossen, J. M.Regeneration of TdT+, pre-B, and B cells in bone marrow after allogeneic bone marrow transplantation. Transplantation, 1987; 43: 865–70.CrossRefGoogle Scholar
Ciudad, J., San Miguel, J. F., Lopez-Berges, M. C., et al.Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL. Br J Haematol, 1999; 104: 695–705.CrossRefGoogle ScholarPubMed
Lochem, E. G., Wiegers, Y. M., Beemd, R., et al.Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia, 2000; 14: 688–95.CrossRefGoogle ScholarPubMed
McKenna, R. W., Washington, L. T., Aquino, D. B., Picker, L. J., & Kroft, S. H.Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood, 2001; 98: 2498–507.CrossRefGoogle ScholarPubMed
Porwit-MacDonald, A., Bjorklund, E., Lucio, P., et al.BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia, 2000; 14: 816–25.CrossRefGoogle Scholar
Ciudad, J., San Miguel, J. F., Lopez-Berges, M. C., et al.Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol, 1998; 16: 3774–81.CrossRefGoogle ScholarPubMed
Lucio, P., Gaipa, G., Lochem, E. G., et al.BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia, 2001; 15: 1185–92.CrossRefGoogle ScholarPubMed
Weir, E. G., Cowan, K., LeBeau, P., & Borowitz, M. J.A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia, 1999; 13: 558–67.CrossRefGoogle ScholarPubMed
Dworzak, M. N., Fritsch, G., Fleischer, C., et al.Comparative phenotype mapping of normal versus malignant pediatric B- lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol, 1998; 26: 305–13.Google Scholar
Campana, D., Thompson, J. S., Amlot, P., Brown, S., & Janossy, G.The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol, 1987; 138: 648–55.Google ScholarPubMed
Hurwitz, C. A., Loken, M. R., Graham, M. L., et al.Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood, 1988; 72: 299–307.Google ScholarPubMed
Wells, D. A., Hall, M. C., Shulman, H. M., & Loken, M. R.Occult B cell malignancies can be detected by three-color flow cytometry in patients with cytopenias. Leukemia, 1998; 12: 2015–23.CrossRefGoogle ScholarPubMed
Campana, D. & Coustan-Smith, E.Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol, 2002; 15: 1–19.CrossRefGoogle ScholarPubMed
Lavabre-Bertrand, T., Janossy, G., Ivory, K., et al.Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry, 1994; 18: 209–17.CrossRefGoogle ScholarPubMed
Terstappen, L. W. & Loken, M. R.Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Anal Cell Pathol, 1990; 2: 229–40.Google ScholarPubMed
Coustan-Smith, E., Ribeiro, R. C., Rubnitz, J. E., et al.Clinical significance of residual disease during treatment in childhood acute myeloid leukemia. Br J Haematol, 2003; 123: 243–52.CrossRefGoogle Scholar
Campana, D. & Coustan-Smith, E.Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry, 1999; 38: 139–52.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Venditti, A., Buccisano, F., Del Poeta, G, et al.Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood, 2000; 96: 3948–52.Google ScholarPubMed
Sievers, E. L., Lange, B. J., Alonzo, T. A., et al.Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 acute myeloid leukemia patients. Blood, 2003; 101: 3398–406.CrossRefGoogle Scholar
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.CrossRefGoogle ScholarPubMed
Chen, J. S., Coustan-Smith, E., Suzuki, T., et al.Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood, 2001; 97: 2115–20.CrossRefGoogle ScholarPubMed
De Waele, M, Renmans, W., Jochmans, K., et al.Different expression of adhesion molecules on CD34+ cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol, 1999; 63: 192–201.CrossRefGoogle ScholarPubMed
Gross, H. J., Verwer, B., Houck, D., & Recktenwald, D.Detection of rare cells at a frequency of one per million by flow cytometry. Cytometry, 1993; 14: 519–26.CrossRefGoogle Scholar
Neale, G. A., Coustan-Smith, E., Pan, Q., et al.Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia, 1999; 13: 1221–6.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Behm, F. G., Sanchez, J., et al.Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet, 1998; 351: 550–4.CrossRefGoogle ScholarPubMed
Pui, C. H., Raimondi, S. C., Behm, F. G., et al.Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood, 1986; 68: 1306–10.Google ScholarPubMed
Abshire, T. C., Buchanan, G. R., Jackson, J. F., et al.Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia, 1992; 6: 357–62.Google ScholarPubMed
Macedo, A., San Miguel, J. F., Vidriales, M. B., et al.Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol, 1996; 49: 15–18.CrossRefGoogle ScholarPubMed
Thomas, X., Campos, L., Archimbaud, E., et al.Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol, 1992; 81: 40–4.CrossRefGoogle ScholarPubMed
Wering, E. R., Beishuizen, A., Roeffen, E. T., et al.Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia, 1995; 9: 1523–33.Google ScholarPubMed
Chucrallah, A. E., Stass, S. A., Huh, Y. O., Albitar, M., & Kantarjian, H. M.Adult acute lymphoblastic leukemia at relapse. Cytogenetic, immunophenotypic, and molecular changes. Cancer, 1995; 76: 985–91.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Guglielmi, C., Cordone, I., Boecklin, F., et al.Immunophenotype of adult and childhood acute lymphoblastic leukemia: changes at first relapse and clinico-prognostic implications. Leukemia, 1997; 11: 1501–7.CrossRefGoogle ScholarPubMed
Oelschlagel, U., Nowak, R., Schaub, A., et al.Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry, 2000; 42: 247–53.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Baer, M. R., Stewart, C. C., Dodge, R. K., et al.High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood, 2001; 97: 3574–80.CrossRefGoogle Scholar
Tomova, A. & Babusikova, O.Shifts in expression of immunological cell markers in relapsed acute leukemia. Neoplasma, 2001; 48: 164–8.Google ScholarPubMed
Foroni, L., Harrison, C. J., Hoffbrand, A. V., & Potter, M. N.Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol, 1999; 105: 7–24.Google ScholarPubMed
Radich, J. P.Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am, 2001; 15: 21–36.CrossRefGoogle ScholarPubMed
Arico, M., Valsecchi, M. G., Camitta, B., et al.Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.CrossRefGoogle ScholarPubMed
Kebriaei, P. & Larson, R. A.Progress and challenges in the therapy of adult acute lymphoblastic leukemia. Curr Opin Hematol, 2003; 10: 284–9.CrossRefGoogle ScholarPubMed
Gokbuget, N., Kneba, M., Raff, T., et al.Risk-adapted treatment according to minimal residual disease in adult ALL. Best Pract Res Clin Haematol, 2002; 15: 639–52.CrossRefGoogle ScholarPubMed
Cazzaniga, G., Lanciotti, M., Rossi, V., et al.Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol, 2002; 119: 445–53.CrossRefGoogle Scholar
Scheuring, U. J., Pfeifer, H., Wassmann, B., et al.Early minimal residual disease (MRD) analysis during treatment of Philadelphia chromosome/Bcr-Abl-positive acute lymphoblastic leukemia with the Abl-tyrosine kinase inhibitor imatinib (STI571). Blood, 2003; 101: 85–90.CrossRefGoogle Scholar
Biondi, A., Rambaldi, A., Rossi, V., et al.Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood, 1993; 82: 2943–7.Google Scholar
Cimino, G., Elia, L., Rivolta, A., et al.Clinical relevance of residual disease monitoring by polymerase chain reaction in patients with ALL-1/AF-4 positive-acute lymphoblastic leukaemia. Br J Haematol, 1996; 92: 659–64.CrossRefGoogle ScholarPubMed
Ida, K., Taki, T., Bessho, F., et al.Detection of chimeric mRNAs by reverse transcriptase-polymerase chain reaction for diagnosis and monitoring of acute leukemias with 11q23 abnormalities. Med Pediatr Oncol, 1997; 28: 325–32.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Cimino, G., Elia, L., Rapanotti, M. C., et al.A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood, 2000; 95: 96–101.Google Scholar
Cayuela, J. M., Baruchel, A., Orange, C., et al.TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood, 1996; 88: 302–8.Google ScholarPubMed
Nakao, M., Yokota, S., Horiike, S., et al.Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 1463–70.Google ScholarPubMed
Satake, N., Kobayashi, H., Tsunematsu, Y., et al.Minimal residual disease with TEL-AML1 fusion transcript in childhood acute lymphoblastic leukaemia with t(12;21). Br J Haematol, 1997; 97: 607–11.CrossRefGoogle Scholar
Zuna, J., Hrusak, O., Kalinova, M., et al.TEL/AML1 positivity in childhood ALL: average or better prognosis ? Czech Paediatric Haematology Working Group. Leukemia, 1999; 13: 22–4.CrossRefGoogle ScholarPubMed
Riehm, H., Reiter, A., Schrappe, M., et al.[Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83)]. Klin Padiatr, 1987; 199: 151–60.CrossRefGoogle Scholar
Cave, H., Werff ten Bosch, J., Suciu, S., et al.Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med, 1998; 339: 591–8.CrossRefGoogle ScholarPubMed
Jacquy, C., Delepaut, B., Daele, S., et al.A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol, 1997; 98: 140–6.CrossRefGoogle Scholar
Brisco, M. J., Condon, J., Hughes, E., et al.Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet, 1994; 343: 196–200.CrossRefGoogle ScholarPubMed
Wasserman, R., Galili, N., Ito, Y., et al.Residual disease at the end of induction therapy as a predictor of relapse during therapy in childhood B-lineage acute lymphoblastic leukemia. J Clin Oncol, 1992; 10: 1879–88.CrossRefGoogle ScholarPubMed
Gruhn, B., Hongeng, S., Yi, H., et al.Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome. Leukemia, 1998; 12: 675–81.CrossRefGoogle ScholarPubMed
Goulden, N. J., Knechtli, C. J., Garland, R. J., et al.Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Br J Haematol, 1998; 100: 235–44.CrossRefGoogle ScholarPubMed
Nyvold, C., Madsen, H. O., Ryder, L. P., et al.Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood, 2002; 99: 1253–8.CrossRefGoogle ScholarPubMed
Willemse, M. J., Seriu, T., Hettinger, K., et al.Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood, 2002; 99: 4386–93.CrossRefGoogle ScholarPubMed
Pongers-Willemse, M. J., Verhagen, O. J., Tibbe, G. J., et al.Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia, 1998; 12: 2006–14.CrossRefGoogle ScholarPubMed
Rivera, G. K., Pinkel, D., Simone, J. V., Hancock, M. L., & Crist, W. M.Treatment of acute lymphoblastic leukemia. 30 years' experience at St. Jude Children's Research Hospital. N Engl J Med, 1993; 329: 1289–95.CrossRefGoogle ScholarPubMed
Panzer-Grumayer, E. R., Schneider, M., Panzer, S., Fasching, K., & Gadner, H.Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood, 2000; 95: 790–4.Google ScholarPubMed
Dibenedetto, S. P., LoNigro, L., Mayer, S. P., Rovera, G., & Schiliro, G.Detectable molecular residual disease at the beginning of maintenance therapy indicates poor outcome in children with T-cell acute lymphoblastic leukemia. Blood, 1997; 90: 1226–32.Google ScholarPubMed
Nizet, Y., Daele, S., Lewalle, P., et al.Long-term follow-up of residual disease in acute lymphoblastic leukemia patients in complete remission using clonogeneic IgH probes and the polymerase chain reaction. Blood, 1993; 82: 1618–25.Google ScholarPubMed
Neale, G. A., Menarguez, J., Kitchingman, G. R., et al.Detection of minimal residual disease in T-cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse. Blood, 1991; 78: 739–47.Google ScholarPubMed
Yokota, S., Hansen-Hagge, T. E., Ludwig, W. D., et al.Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood, 1991; 77: 331–9.Google ScholarPubMed
Biondi, A., Yokota, S., Hansen-Hagge, T. E., et al.Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse. Leukemia, 1992; 6: 282–8.Google ScholarPubMed
Roberts, W. M., Estrov, Z., Ouspenskaia, M. V., et al.Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med, 1997; 336: 317–23.CrossRefGoogle ScholarPubMed
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E. F., et al.Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia. Leukemia, 1995; 9: 1726–34.Google ScholarPubMed
Eckert, C., Biondi, A., Seeger, K., et al.Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet, 2001; 358: 1239–41.CrossRefGoogle ScholarPubMed
Velden, V., Joosten, S. A., Willemse, M. J., et al.Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia, 2001; 15: 1485–7.CrossRefGoogle ScholarPubMed
Bader, P., Hancock, J., Kreyenberg, H., et al.Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia, 2002; 16: 1668–72.CrossRefGoogle Scholar
Uzunel, M., Mattsson, J., Jaksch, M., Remberger, M., & Ringden, O.The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood, 2001; 98: 1982–4.CrossRefGoogle ScholarPubMed
Knechtli, C. J., Goulden, N. J., Hancock, J. P., et al.Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol, 1998; 102: 860–71.CrossRefGoogle ScholarPubMed
Ishikawa, K., Seriu, T., Watanabe, A., et al.Detection of neoplastic clone in the hypoplastic and recovery phases preceding acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain gene. J Pediatr Hematol Oncol, 1995; 17: 270–5.CrossRefGoogle ScholarPubMed
Morley, A. A., Brisco, M. J., Rice, M., et al.Leukaemia presenting as marrow hypoplasia: molecular detection of the leukaemic clone at the time of initial presentation. Br J Haematol, 1997; 98: 940–4.CrossRefGoogle ScholarPubMed
Goulden, N., Langlands, K., Steward, C., et al.PCR assessment of bone marrow status in ‘isolated’ extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. Br J Haematol, 1994; 87: 282–5.CrossRefGoogle ScholarPubMed
Neale, G. A., Pui, C. H., Mahmoud, H. H., et al.Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia, 1994; 8: 768–75.Google ScholarPubMed
O'Reilly, J., Meyer, B., Baker, D., et al.Correlation of bone marrow minimal residual disease and apparent isolated extramedullary relapse in childhood acute lymphoblastic leukaemia. Leukemia, 1995; 9: 624–7.Google ScholarPubMed
Cave, H., Guidal, C., Rohrlich, P., et al.Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood, 1994; 83: 1892–902.Google ScholarPubMed
Lal, A., Kwan, E., al Mahr, M.et al.Molecular detection of acute lymphoblastic leukaemia in boys with testicular relapse. Mol Pathol, 1998; 51: 277–81.CrossRefGoogle ScholarPubMed
Vervoordeldonk, S. F., Merle, P. A., Behrendt, H., et al.PCR-positivity in harvested bone marrow predicts relapse after transplantation with autologous purged bone marrow in children in second remission of precursor B-cell acute leukaemia. Br J Haematol, 1997; 96: 395–402.CrossRefGoogle ScholarPubMed
Balduzzi, A., Gaipa, G., Bonanomi, S., et al.Purified autologous grafting in childhood acute lymphoblastic leukemia in second remission: evidence for long-term clinical and molecular remissions. Leukemia, 2001; 15: 50–6.CrossRefGoogle ScholarPubMed
Velden, V., Willemse, M. J., Mulder, M. F., et al.Clearance of maternal leukaemic cells in a neonate. Br J Haematol, 2001; 114: 104–6.CrossRefGoogle Scholar
Greaves, M.Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer, 1999; 35: 1941–53.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Ford, A. M., Wering, E. R., Postma, A., & Greaves, M.Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 1999; 94: 1057–62.Google ScholarPubMed
Campana, D.Determination of minimal residual disease in leukemia patients. Br J Haematol, 2003; 121: 823–38.CrossRefGoogle Scholar
Velden, V., Jacobs, D. C., Wijkhuijs, A. J., et al.Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia, 2002; 16: 1432–6.CrossRefGoogle Scholar
Coustan-Smith, E., Gajjar, A., Hijiya, N., et al.Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia, 2004; 18: 499–504.CrossRefGoogle ScholarPubMed
Grimwade, D.The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol, 1999; 106: 591–613.CrossRefGoogle ScholarPubMed
Mandelli, F., Diverio, D., Avvisati, G., et al.Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood, 1997; 90: 1014–21.Google ScholarPubMed
Burnett, A. K., Grimwade, D., Solomon, E., Wheatley, K., & Goldstone, A. H.Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood, 1999; 93: 4131–43.Google ScholarPubMed
Slack, J. L., Bi, W., Livak, K. J., et al.Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction. J Mol Diagn, 2001; 3: 141–9.CrossRefGoogle ScholarPubMed
Cassinat, B., Zassadowski, F., Balitrand, N., et al.Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia, 2000; 14: 324–8.CrossRefGoogle Scholar
Lo Coco, F.Diverio, D., Avvisati, G., et al.Therapy of molecular relapse in acute promyelocytic leukemia. Blood, 1999; 94: 2225–9.Google ScholarPubMed
Nucifora, G., Larson, R. A., & Rowley, J. D.Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood, 1993; 82: 712–15.Google ScholarPubMed
Kusec, R., Laczika, K., Knobl, P., et al.AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia, 1994; 8: 735–9.Google ScholarPubMed
Saunders, M. J., Tobal, K., & Yin, J. A.Detection of t(8;21) by reverse transcriptase polymerase chain reaction in patients in remission of acute myeloid leukaemia type M2 after chemotherapy or bone marrow transplantation. Leuk Res, 1994; 18: 891–5.CrossRefGoogle ScholarPubMed
Jurlander, J., Caligiuri, M. A., Ruutu, T., et al.Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood, 1996; 88: 2183–91.Google Scholar
Kwong, Y. L., Chan, V., Wong, K. F., & Chan, T. K.Use of the polymerase chain reaction in the detection of AML1/ETO fusion transcript in t(8;21). Cancer, 1995; 75: 821–5.3.0.CO;2-Z>CrossRefGoogle Scholar
Satake, N., Maseki, N., Kozu, T., et al.Disappearance of AML1-MTG8(ETO) fusion transcript in acute myeloid leukaemia patients with t(8;21) in long-term remission. Br J Haematol, 1995; 91: 892–8.CrossRefGoogle Scholar
Sugimoto, T., Das, H., Imoto, S., et al.Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol, 2000; 64: 101–6.3.0.CO;2-X>CrossRefGoogle Scholar
Marcucci, G., Livak, K. J., Bi, W., et al.Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia, 1998; 12: 1482–9.CrossRefGoogle ScholarPubMed
Barragan, E., Bolufer, P., Moreno, I., et al.Quantitative detection of AML1-ETO rearrangement by real-time RT-PCR using fluorescently labeled probes. Leuk Lymphoma, 2001; 42: 747–56.CrossRefGoogle ScholarPubMed
Viehmann, S., Teigler-Schlegel, A., Bruch, J., et al.Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia, 2003; 17: 1130–6.CrossRefGoogle ScholarPubMed
Marcucci, G., Caligiuri, M. A., Dohner, H., et al.Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia, 2001; 15: 1072–80.CrossRefGoogle ScholarPubMed
Buonamici, S., Ottaviani, E., Testoni, N., et al.Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood, 2002; 99: 443–9.CrossRefGoogle Scholar
Reijden, B. A., Simons, A., Luiten, E., et al.Minimal residual disease quantification in patients with acute myeloid leukaemia and inv(16)/CBFB-MYH11 gene fusion. Br J Haematol, 2002; 118: 411–18.CrossRefGoogle ScholarPubMed
Reichle, A., Rothe, G., Krause, S., et al.Transplant characteristics: minimal residual disease and impaired megakaryocytic colony growth as sensitive parameters for predicting relapse in acute myeloid leukemia. Leukemia, 1999; 13: 1227–34.CrossRefGoogle ScholarPubMed
Pui, C. H. & Campana, D.New definition of remission in childhood acute lymphoblastic leukemia. Leukemia, 2000; 14: 783–5.CrossRefGoogle ScholarPubMed
Neale, G. A. M., Coustan-Smith, E., Stow, P., et al.Comparative analysis of polymerase chain reaction and flow cytometry for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia, 2004; 18: 934–8.CrossRefGoogle ScholarPubMed
Muller, M. C., Merx, K., Weibetaer, A., et al.Improvement of molecular monitoring of residual disease in leukemias by bedside RNA stabilization. Leukemia, 2002; 16: 2395–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Minimal residual disease
    • By Dario Campana, Member, Departments of Hematology/Oncology and Pathology, St. Jude Children's Research Hospital, Professor, Department of Pediatrics College of Medicine University of Tennessee Health Science Center, Memphis, TN, USA, Andrea Biondi, Director, M. Tettamanti Research Center, Associate Professor, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy, Jacques J. M. van Dongen, Professor, Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Minimal residual disease
    • By Dario Campana, Member, Departments of Hematology/Oncology and Pathology, St. Jude Children's Research Hospital, Professor, Department of Pediatrics College of Medicine University of Tennessee Health Science Center, Memphis, TN, USA, Andrea Biondi, Director, M. Tettamanti Research Center, Associate Professor, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy, Jacques J. M. van Dongen, Professor, Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Minimal residual disease
    • By Dario Campana, Member, Departments of Hematology/Oncology and Pathology, St. Jude Children's Research Hospital, Professor, Department of Pediatrics College of Medicine University of Tennessee Health Science Center, Memphis, TN, USA, Andrea Biondi, Director, M. Tettamanti Research Center, Associate Professor, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy, Jacques J. M. van Dongen, Professor, Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.029
Available formats
×