Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T07:37:58.828Z Has data issue: false hasContentIssue false

26 - The Talbot effect

Published online by Cambridge University Press:  31 January 2011

Masud Mansuripur
Affiliation:
University of Arizona
Get access

Summary

The Talbot effect, also referred to as self-imaging or lensless imaging, was originally discovered in the 1830s by H. F. Talbot. Over the years, investigators have come to understand different aspects of this phenomenon, and a theory of the Talbot effect based on classical diffraction theory has emerged which is capable of explaining the various observations. For a detailed description of the Talbot effect and related phenomena, as well as a historical perspective on the subject, the reader may consult references 3 and 4 and further references cited therein. Since many of the standard optics textbooks do not even mention the Talbot effect, it is worthwhile to bring to the reader's attention the essential features of this phenomenon.

Lensless imaging of a periodic pattern

The Talbot effect is observed when, under appropriate conditions, a beam of light is reflected from (or transmitted through) a periodic pattern. The pattern may have one-dimensional periodicity (as in traditional gratings), or it may exhibit periodicity in two dimensions (e.g., a surface relief structure or a photographic plate imprinted with identical features on a regular lattice).

In what follows we shall present the diffraction patterns obtained from a periodic array of cross-shaped apertures in an otherwise opaque screen. Because the diffraction pattern of a single aperture differs markedly from that of a periodic array of such apertures, we begin by examining the behavior of an individual aperture under coherent illumination.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Talbot, H. F., Phil. Mag. 9, 401 (1836).
Rayleigh, Lord, Phil. Mag. 11, 196 (1881).CrossRef
Bryngdahl, O., Image formation using self-imaging techniques, J. Opt. Soc. Am. 63, 416–419 (1973).CrossRefGoogle Scholar
Clauser, J. F. and Reinsch, M. W., New theoretical and experimental results in Fresnel optics with applications to matter-wave and X-ray interferometry, Appl. Phys. B 54, 380–395 (1992).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Talbot effect
  • Masud Mansuripur, University of Arizona
  • Book: Classical Optics and its Applications
  • Online publication: 31 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803796.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Talbot effect
  • Masud Mansuripur, University of Arizona
  • Book: Classical Optics and its Applications
  • Online publication: 31 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803796.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Talbot effect
  • Masud Mansuripur, University of Arizona
  • Book: Classical Optics and its Applications
  • Online publication: 31 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803796.029
Available formats
×