Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T00:28:30.876Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 December 2009

Yemima Ben-Menahem
Affiliation:
Hebrew University of Jerusalem
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Conventionalism
From Poincare to Quine
, pp. 301 - 320
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1967. Principles of Relativity Physics, New York: Academic Press.Google Scholar
Anderson, R., Vetharaniam, I., and Stedman, G. E. 1998. “Conventionality of Synchronisation, Gauge Dependence and Test Theories of Relativity,” Physics Reports 295, 93–180.CrossRefGoogle Scholar
Aspray, W. and Kitcher, P. (eds.) 1988. History and Philosophy of Modern Mathematics, Minnesota Studies in the Philosophy of Mathematics 11, Minneapolis: University of Minnesota Press.Google Scholar
Ayer, A. J. 1936. “Truth by Convention: A Symposium,” Analysis 4, 17–22.Google Scholar
Ayer, A. J. 1936a. Language, Truth and Logic, 2nd ed., 1946, London: Victor Gollancz.Google Scholar
Ayer, A. J. (ed.) 1959. Logical Positivism, New York: Free Press.Google Scholar
Babak, S. V. and Grishchuk, L. P. 2000. “The Energy Momentum Tensor for the Gravitational Field,” Physical Review D 61 024038.Google Scholar
Baker, G. P. and Hacker, P. M. S. 1984. Scepticism, Rules and Language, Oxford: Blackwell.Google Scholar
Barbour, J. B. and Pfister, H. (eds.) 1995. Mach's Principle, Berlin: Birkhäuser.Google Scholar
Bar-Elli, G. 1996. The Sense of Reference, Berlin and New York: de Gruyter.CrossRefGoogle Scholar
Barrett, R. B. and Gibson, R. F. (eds.) 1990. Perspectives on Quine, Oxford: Blackwell.Google Scholar
Bekenstein, J. D. 2001. “The Limits of Information,” Studies in the History and Philosophy of Modern Physics 32, 511–24.CrossRefGoogle Scholar
Bell, D. and Vossenkuhl, W. (eds.) 1992. Wissenschaft und Subjektivität/Science and Subjectivity, Berlin: Akademie Verlag.Google Scholar
Belnap, N. 1962. “Tonk, Plonk and Plink,” Analysis 22, 130–4.CrossRefGoogle Scholar
Benacerraf, P. 1973. “Mathematical Truth,” Journal of Philosophy 70, 661–79.CrossRefGoogle Scholar
Benacerraf, P. 1985. “Skolem and the Skeptic,” Proceedings of the Aristotelian Society, Supplementary Volume 59, 85–115. Also in Shapiro 1996, 419–50.CrossRefGoogle Scholar
Benacerraf, P. and Putnam, H. (eds.) 1983. Philosophy of Mathematics, Selected Writings, 2nd ed., Cambridge: Cambridge University Press.Google Scholar
Ben-Menahem, Y. 1993. “Struggling with Causality: Einstein's Case,” Science in Context 12, 291–310.Google Scholar
Ben-Menahem, Y. 1995. “Pragmatism and Revisionism: James's Conception of Truth,” International Journal of Philosophical Studies 3, 270–89.CrossRefGoogle Scholar
Ben-Menahem, Y. 1998. “Explanation and Description: Wittgenstein on Convention,” Synthese 115, 99–130.CrossRefGoogle Scholar
Ben-Menahem, Y. 2001. “Convention: Poincaré and Some of His Critics,” British Journal for the Philosophy of Science 52, 471–513.CrossRefGoogle Scholar
Ben-Menahem, Y. 2001a. “Direction and Description,” Studies in the History and Philosophy of Modern Physics 32, 621–35.CrossRefGoogle Scholar
Ben-Menahem, Y. (ed.) 2005. Hilary Putnam,Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ben-Menahem, Y. 2005a. “Putnam on Skepticism,” in Ben-Menahem 2005, 125–55.
Bergsrom, L. 1990. “Quine on Underdetermination,” in Barrett and Gibson 1990, 38–52.
Bergsrom, L. 1993. “Quine, Underdetermination and Skepticism,” Journal of Philosophy 90, 331–58.CrossRefGoogle Scholar
Bernays, P. 1930. “Die Philosophie der Mathematik und die Hilbertsche Beweistheorie,” Blätter für deutsche Philosophie 4, 326–67. Also in Bernays 1976, 17–61.Google Scholar
Bernays, P. 1967. “What Do Some Recent Results in Set Theory Suggest?” in Lakatos 1967, 109–12.
Bernays, P. 1976. Abhandlungen zur Philosophie der Mathematik, Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
Berry, G. D. W. 1953. “On the Ontological Significance of the Löwenheim-Skolem Theorem,” in White, M. (ed.), Academic Freedom, Logic and Religion, Philadelphia: American Philosophical Society, University of Pennsylvania Press, 39–55.CrossRefGoogle Scholar
Beth, E. W. 1953. “On Padoa's Method in the Theory of Definition,” Indagationes Mathematicae 15, 330–9.CrossRefGoogle Scholar
Beth, E. W. 1959. The Foundations of Mathematics, Amsterdam: North-Holland.Google Scholar
Beth, E. W. 1963. “Carnap's Views on the Advantages of Constructed Systems over Natural Languages in the Philosophy of Science,” in Schilpp 1963, 469–502.
Black, M. 1936. “Truth by Convention: A Symposium,” Analysis 4, 28–32.Google Scholar
Black, M. 1942. “Conventionalism in Geometry and the Interpretation of Necessary Statements,” Philosophy of Science 9, 335–49.CrossRefGoogle Scholar
Boghossian, P. and Peacocke, C. 2000. New Essays on the A Priori, Oxford: Clarendon Press.CrossRefGoogle Scholar
Braithwaite, R. B. (1955). Scientific Explanation, Cambridge: Cambridge University Press.Google Scholar
Brenner, A. A. 1990. “Holism a Century Ago: The Elaboration of Duhem's Thesis,” Synthese 83, 325–35.CrossRefGoogle Scholar
Buchdahl, H. A. 1981. Seventeen Simple Lectures on General Relativity Theory, New York: John Wiley & Sons.Google Scholar
Burali-Forti, C. 1901. “Sur les différentes méthodes logiques pour la définition du nombre réel,” Bibliothèque du Congrès international de philosophie 3, Paris: A. Colin, 289–308.Google Scholar
Buzaglo, M. 2002. The Logic of Conceptual Expansion, Cambridge: Cambridge University Press.Google Scholar
Capek, M. 1971. Bergson and Modern Physics,Cohen, R. S. and Wartofsky, M. W. (eds.), Boston Studies in the Philosophy of Science 7, Dordrecht: Reidel.Google Scholar
Carnap, R. 1922. Der Raum. Ein Beitrag zur Wissenschaftslehre, Kant-Studien. Ergänzungshefte 56, Berlin: Reuther & Reichard.Google Scholar
Carnap, R. 1923. “Über die Aufgabe der Physik und die Anwendung des Grundsatzes der Einfachheit,” Kant-Studien 28, 90–107.CrossRefGoogle Scholar
Carnap, R. 1924. “Dreidimensionalität des Raumes und Kausalität,” Annalen der Philosophie und philosophischen Kritik 4, 105–30.Google Scholar
Carnap, R. 1927. “Eigentliche und uneigentliche Begriffe,” Symposion: Philosophische Zeitschrift für Forschung und Aussprache 1, 355–74.Google Scholar
Carnap, R. [1928] 1967. Der logische Aufbau der Welt, Berlin: Weltkreis; trans. R. George as The Logical Structure of the World, Berkeley: University of California Press.Google Scholar
Carnap, R. 1930. “Die alte und die neue Logik,” Erkenntnis 1, 12–26; trans. Isaac Levi as “The Old and the New Logic,” in Ayer 1959, 133–46.CrossRefGoogle Scholar
Carnap, R. 1930a. “Die Mathematik als Zweig der Logik,” Blätter für Deutsche Philosophie 4, 298–310.Google Scholar
Carnap, R. 1931. “Überwindung der Metaphysik durch logische Analyse der Sprache,” Erkenntnis 2, 219–41; trans. A. Pap as “The Elimination of Metaphysics through Logical Analysis of Language,” in Ayer 1959, 60–82.CrossRefGoogle Scholar
Carnap, R. [1932] 1934. “Die physikalische Sprache als Universalsprache der Wissenschaft,” Erkenntnis 2, 432–65; trans. and with an introduction by Max Black as The Unity of Science, London: Kegan Paul, revised by Carnap for the English edition.CrossRefGoogle Scholar
Carnap, R. [1934] 1937. Logische Syntax der Sprache, Vienna: Julius Springer; trans. A. Smeaton as The Logical Syntax of Language, London: Routledge and Kegan Paul.CrossRefGoogle Scholar
Carnap, R. 1935. Philosophy and Logical Syntax, London: Kegan Paul.Google Scholar
Carnap, R. 1936–7. “Testability and Meaning,” Philosophy of Science 3, 420–71; 4, 2–40.CrossRefGoogle Scholar
Carnap, R. 1942. Introduction to Semantics, Cambridge, MA: Harvard University Press.Google Scholar
Carnap, R. 1950Empiricism, Semantics and Ontology,” Revue International de Philosophie 4, 20–40. Also in Carnap 1956, 205–21.Google Scholar
Carnap, R. 1956. Meaning and Necessity, 2nd ed., Chicago: University of Chicago Press.Google Scholar
Carnap, R. 1963. “Carnap's Intellectual Autobiography,” in Schilpp 1963, 1–84.
Carnap, R. 1963a. “W. V. Quine on Logical Truth,” in Schilpp 1963, 915–21.
Carnap, R. 1963b. “E. W. Beth on Constructed Language Systems,” in Schilpp 1963, 927–32.
Carnap, R. 1966. Philosophical Foundations of Physics: An Introduction to the Philosophy of Science, New York: Basic Books.Google Scholar
Carroll, L. 1895. “What the Tortoise Said to Achilles,” Mind 4, 278–80.CrossRefGoogle Scholar
Cartwright, N. 1983. How the Laws of Physics Lie, Oxford: Clarendon.CrossRefGoogle Scholar
Ciufolini, I.Dominici, D., and Lusanna, L. (eds.) 2003. 2001: A Relativistic Spacetime Odyssey, Hackensack, NJ: World Scientific.CrossRefGoogle Scholar
Clark, P. and Hale, B. (eds.) 1994. Reading Putnam, Oxford: Blackwell.Google Scholar
Coffa, A. J. 1979. “Effective Affinities,” in Salmon 1979, 267–304.
Coffa, A. J. 1986. “From Geometry to Tolerance: Sources of Conventionalism in Nineteenth-Century Geometry,” in Colodny, R. G. (ed.), From Quarks to Quasers: Philosophical Problems of Modern Physics, Pittsburgh: University of Pittsburgh Press, 3–70.Google Scholar
Coffa, A. J. 1987. “Carnap, Tarski, and the Search for Truth,” Noûs 21, 547–72.CrossRefGoogle Scholar
Coffa, A. J. 1991. The Semantic Tradition from Kant to Carnap: To the Vienna Station, ed. Wessels, L., Cambridge: Cambridge University Press.Google Scholar
Conant, J. 1992. “The Search for Logically Alien Thought: Descartes, Kant, Frege, and the Tractatus,” Philosophical Topics 20, 115–80.CrossRefGoogle Scholar
Conant, J. 2000. “Elucidation and Nonsense in Frege and Early Wittgenstein,” in Crary and Read 2000, 174–217.
Corcoran, J. 1971. “A Semantic Definition of Definition,” Journal of Symbolic Logic 36, 366–7.Google Scholar
Corcoran, J. 1980. “Categoricity,” History and Philosophy of Logic 1, 137–207.CrossRefGoogle Scholar
Cornu, A. 1891. “Sur une expérience récente, déterminant la direction de la vibration dans la lumière polarisée,” Comptes Rendus des Séances de l'Académie des Sciences 112, 186–9.Google Scholar
Corry, L. 2004. David Hilbert and the Axiomatization of Physics 1898–1918: From Grundlagen der Geometrie to Grundlagen der Physik, Dordrecht: Kluwer.CrossRefGoogle Scholar
Crary, A. and Read, R. (eds.) 2000. The New Wittgenstein, London: Routledge.CrossRefGoogle Scholar
Creath, R. 1987. “The Initial Reception of Carnap's Doctrine of Analyticity,” Noûs 21, 477–99.CrossRefGoogle Scholar
Creath, R. (ed.) 1990. Dear Carnap, Dear Van: The Quine-Carnap Correspondence and Related Work, Berkeley: University of California Press.Google Scholar
Creath, R. 1992. “Carnap's Conventionalism,” Synthese 93, 141–65.CrossRefGoogle Scholar
Curry, H. B. 1954. “Remarks on the Definition and Nature of Mathematics,” in Benacerraf and Putnam 1983, 202–6.
Davidson, D. 1984. “On the Very Idea of a Conceptual Scheme,” in Inquiries into Truth and Interpretation, Oxford: Clarendon, 183–98.Google Scholar
Davidson, D. 1995. “Pursuit of the Concept of Truth,” in Leonardi and Santambrogio 1995, 7–21.
Dedekind, J. W. R. [1888] 1932. “Was sind und was sollen die Zahlen?” Gesammelte mathematische Werke, ed. Fricke, R, Noether, E., and Ore, O., Braunschweig: F. Vieweg & Sohn, 3:335–91; trans. W. W. Beman in Ewald 1996, 2:790–833.Google Scholar
Diamond, C. 1991. The Realistic Spirit: Wittgenstein, Philosophy and the Mind, Cambridge, MA: MIT Press.Google Scholar
Diamond, C. 1991a. “Throwing Away the Ladder: How to Read the Tractatus,” in Diamond 1991, 179–204.
Diamond, C. 1991b. “The Face of Necessity,” in Diamond 1991, 243–66.
Dieks, D. 1987. “Gravitation as a Universal Force,” Synthese 73, 381–97.CrossRefGoogle Scholar
Dingler, H. 1913. Grundlagen der Naturphilosophie, Leipzig: Verlag Unesma.Google Scholar
Dreben, B. 1990. “Quine,” in Barrett and Gibson 1990, 81–95.
Dreben, B. and Floyd, J. 1991. “Tautology: How Not to Use a Word,” Synthese 87, 23–49.CrossRefGoogle Scholar
Duhem, P. 1892. “Quelques réflexions au sujet des théories physiques,” Revue des Questions Scientifiques 31 (2nd series), 139–77; trans. R. Ariew and P. Baker as “Some Reflections on the Subject of Physical Theories,” in Duhem 1996, 1–28.Google Scholar
Duhem, P. 1893. “Review of Poincaré 1892, vol. 2,” Revue des Questions Scientifiques 33 (2nd series), 257–9.Google Scholar
Duhem, P. 1894. “Quelques réflexions au sujet de la physique expérimentale,” Revue des Questions Scientifiques 36 (2nd series), 179–229; trans. R. Ariew and P. Baker as “Some Reflections on the Subject of Experimental Physics,” in Duhem 1996, 75–111.Google Scholar
Duhem, P. 1894a. “Les théories de l'optique,” Revue des Deux Mondes 123, 94–125.Google Scholar
Duhem, P. [1903] 1980. L'Evolution de la méchanique, Paris: Joanin; trans. M. Cole as The Evolution of Mechanics, Alphen aan den Rijn, Nederlans: Sijthoff and Noordhoff.Google Scholar
Duhem, P. [1906] 1954. La Théorie physique: son objet, sa structure, 2nd ed., Paris: M. Rivière & Cie, 1914; trans. P. P. Wiener as The Aim and Structure of Physical Theory, Princeton, NJ: Princeton University Press.Google Scholar
Duhem, P. [1908] 1969. ΣΩZEIN TA ØAINOMENA, Paris: A. Hermann; trans. E. Doland and C. Maschler as To Save the Phenomena, Chicago: University of Chicago Press.Google Scholar
Duhem, P. 1913–1959. Le Système du monde, histoire des doctrines cosmologiques de Platon à Copernic, 10 vols., Paris: Herman.Google Scholar
Duhem, P. 1996. Essays in the History and Philosophy of Science, ed. and trans. Ariew, R. and Barker, P., Indianapolis: Hackett.Google Scholar
Dummett, M. 1978. Truth and Other Enigmas,Cambridge, MA: Harvard University Press.Google Scholar
Dummett, M. 1978a. “The Significance of Quine's Indeterminacy Thesis,” in Dummet 1978, 375–419.
Dummett, M. 1978b. “Wittgenstein's Philosophy of Mathematics,” in Dummett 1978, 166–85.
Dummett, M. 1991. The Logical Basis of Metaphysics, London: Duckworth.Google Scholar
Earman, J. 1989. World Enough and Space-Time, Cambridge, MA: Bradford.Google Scholar
Earman, J. and Norton, J. D. 1987. “What Price Spacetime Substantivalism? The Hole Story,” British Journal for the Philosophy of Science 38, 515–25.CrossRefGoogle Scholar
Ebbs, G. 1997. Rule-Following and Realism, Cambridge, MA: Harvard University Press.Google Scholar
Eddington, A. 1920. Space, Time and Gravitation, Cambridge: Cambridge University Press.Google Scholar
Eddington, A. 1928. The Nature of the Physical World, Cambridge: Cambridge University Press.Google Scholar
Eddington, A. 1939. The Philosophy of Physical Science, New York: Macmillan.Google Scholar
Ehlers, J., Pirani, F. A. E., and Schild, A. 1972. “The Geometry of Free Fall and Light Propagation,” in O'Raifeartaigh 1972, 63–84.
Einstein, A. 1912. “Lichtgeschwindigkeit und Statik des Gravitationfeldes,” Annalen der Physik 38, 355–69. Also in Einstein 1996, document 3, 129–43; trans. as “The Speed of Light and the Statics of the Gravitational Field” in Einstein 1996a, 95–106.CrossRefGoogle Scholar
Einstein, A. 1916. “Die Grundlagen der allgemeinen Relativitätstheorie,” Annalen der Physik 49, 769–822. Also in Einstein 1997, document 30, 283–339; trans. as “The Foundations of the General Theory of Relativity” in Einstein 1997a, 147–200.CrossRefGoogle Scholar
Einstein, A. [1917] 1920. Über die spezielle und die allgemeine Relativitätstheorie, Braunschweig: F. Vieweg & Sohn; trans. R. W. Lawson as Relativity: The Special and the General Theory, London: Methuen.Google Scholar
Einstein, A. 1920. “Äther und Relativitätstheorie,” Berlin: Julius Springer. Also in Einstein 2002, document 38, 306–23; trans. as “Ether and the Theory of Relativity” in Einstein 2002a, 161–82.CrossRefGoogle Scholar
Einstein, A. 1920a. Discussions of Bad Nauheim lectures. Physikalische Zeitschrift 21, 650–1, 662, 666–8. Also in Einstein 2002, document 46, 350–9.Google Scholar
Einstein, A. 1921. “Geometrie und Erfahrung,” Sitzungsberichte der preuss. Akad. der Wissenschaften 1, 123–30. Also in Einstein 2002, document 52, 383–405; trans. S. Bargmann as “Geometry and Experience” in Einstein 1954, 232–45 and in Einstein 2002a, 208–22.Google Scholar
Einstein, A. 1922. The Meaning of Relativity, 5th ed., 1956, Princeton, NJ: Princeton University Press. Also in Einstein 2002, document 47, 497–589.CrossRefGoogle Scholar
Einstein, A. 1927. “Newtons Mechanik und ihr Einfluss auf die Gestaltung der theoretischen Physik,” Die Naturwissenschaften 15, 273–6; trans. S. Bargmann as “The Mechanics of Newton and Their Influence on the Development of Theoretical Physics” in Einstein 1954, 253–61.CrossRefGoogle Scholar
Einstein, A. 1933. “On the Method of Theoretical Physics. The Herbert Spencer Lecture, delivered at Oxford, 10 June 1933,” Oxford: Clarendon; new trans. S. Bargmann in Einstein 1954, 270–6.
Einstein, A. 1934. Mein Weltbild, Amsterdam: Querido Verlag.Google Scholar
Einstein, A. 1936. “Physics and Reality,” Journal of the Franklin Institute 221, 313–47. Also in Einstein 1954, 290–322.CrossRefGoogle Scholar
Einstein, A. 1949. “Reply to Criticisms,” in Schilpp 1949, 663–8.
Einstein, A. 1950. “On the Generalized Theory of Gravitation,” Scientific American 182/4, 13–17. Also in Einstein 1954, 341–55.CrossRefGoogle Scholar
Einstein, A. 1954. Ideas and Opinions, New York: Crown.Google Scholar
Einstein, A. 1996. The Collected Papers of Albert Einstein, vol. 4, Princeton, NJ: Princeton University Press.Google Scholar
Einstein, A. 1996a. English supplement to Einstein 1996; trans. Anna Beck.
Einstein, A. 1997. The Collected Papers of Albert Einstein, vol. 6, Princeton, NJ: Princeton University Press.Google Scholar
Einstein, A. 1997a. English supplement to Einstein 1997; trans. Alfred Engel.
Einstein, A. 2002. The Collected Papers of Albert Einstein, vol. 7, Princeton, NJ: Princeton University Press.Google Scholar
Einstein, A. 2002a. English supplement to Einstein 2002; trans. Alfred Engel.
Einstein, A.Infeld, L., and Hoffmann, B. 1938. “Gravitational Equations and the Problem of Motion,” Annals of Mathematics 39, 65–100.CrossRefGoogle Scholar
Elkana, Y. 1974. The Discovery of the Conservation of Energy, London: Hutchinson.Google Scholar
Ewald, W. B. (ed.) 1996. From Kant to Hilbert, A Source Book in the Foundations of Mathematics, 2 vols., Oxford: Clarendon.Google Scholar
Feigl, H. 1975. “Homage to Rudolf Carnap,” in Hintikka 1975, ⅹⅲ–ⅹⅶ.
Feigl, H. and Maxwell, G. (eds.) 1962. Scientific Explanation, Space and Time, Minnesota Studies in the Philosophy of Science 3, Minneapolis: University of Minnesota Press.Google Scholar
Feyerabend, P. 1962. “Explanation, Reduction and Empiricism,” in Feigl and Maxwell 1962, 28–97.
Feynman, R. P. 1971. Lectures on Gravitation, ed. Morinigo, F. B. and Wagner, W. G., Pasadena: California Institute of Technology.Google Scholar
Field, H. H. bt980. Science Without Numbers, Princeton, NJ: Princeton University Press.Google Scholar
Fine, A. 1971. “Reflections on a Relational Theory of Space,” Synthese 22, 448–81.CrossRefGoogle Scholar
Fine, A. 1986. “Unnatural Attitudes: Realist and Instrumentalist Attachments to Science,” Mind 95, 149–79.CrossRefGoogle Scholar
Floyd, J. 2001. “Number and Ascriptions of Number in Wittgenstein's Tractatus,” in Floyd and Shieh 2001, 145–91.
Floyd, J. and Shieh, S. (eds.) 2001. Future Pasts, Oxford: Oxford University Press.CrossRefGoogle Scholar
Fock, V. [1955] 1966. The Theory of Space, Time and Gravitation, 2nd revised ed.; trans. from the Russian by N. Kemmer, Oxford: Pergamon Press.Google Scholar
Fraenkel, A. A., Bar Hillel, Y., and Levy, A. 1973. Foundations of Set Theory, 2nd ed., Amsterdam: North-Holland.Google Scholar
Frege, G. 1884. Die Grundlagen der Arithmetik,Breslau: W. Koebner; trans. J. Austin as The Foundations of Arithmetic, Oxford: Oxford University Press, 1950.Google Scholar
Frege, G. 1893. Grundgesetze der Artithmetik, Jena: Verlag Hermann Pohle; trans. M. Furth as The Basic Laws of Arithmetic, Berkeley and Los Angeles: University of California Press, 1964.Google Scholar
Frege, G. 1903. “Über die Grundlagen der Geometrie” (Erste Serie), Jahresbericht der Deutschen Mathematiker-Vereinigung 12, 319–24 (part I), 368–75 (part II), in Frege 1967, 262–72; trans. E. H. W. Kluge as “On the Foundations of Geometry” (First Series) in Kluge 1971, 22–37.Google Scholar
Frege, G. 1906. “Über die Grundlagen der Geometrie” (Zweite Serie), Jahresbericht der Deutschen Mathematiker-Vereinigung 15, 293–309 (part I), 377–403 (part II), 423–30 (part III), in Frege 1967, 281–323; trans. E. H. W. Kluge as “On the Foundations of Geometry” (Second Series) in Kluge 1971, 49–112.Google Scholar
Frege, G. 1967. Kleine Schriften, ed. Angelelli, I., Hildesheim: Georg Olms.Google Scholar
Frege, G. 1967a. Unbekannte Briefe Freges über die Grundlagen der Geometrie und Antwortbrief Hilberts an Frege, in Frege 1967, 407–18; trans. E. H. W. Kluge as “Correspondence with Hilbert” in Frege 1971, 6–21.
Frege, G. 1971. On the Foundations of Geometry and Formal Theories of Arithmetic, ed. and trans. Kluge, E. H. W., New Haven; CT: Yale University Press.Google Scholar
Friedman, M. 1983. Foundations of Space-Time Theories, Princeton, NJ: Princeton University Press.Google Scholar
Friedman, M. 1992. Kant and the Exact Sciences, Cambridge, MA: Harvard University Press.Google Scholar
Friedman, M. 1996. “Poincaré's Conventionalism and the Logical Positivists,” in Greffe et al. 1996, 333–44.
Friedman, M. 1999. Reconsidering Logical Positivism, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gergonne, J. D. 1818. “Essai sur la théorie des définitions,” Annales de Mathématiques 9, 1–35.Google Scholar
Giannoni, C. B. 1971. Conventionalism in Logic, The Hague: Mouton.CrossRefGoogle Scholar
Gibson, R. F. Jr. 1986. “Translation, Physics and Facts of the Matter,” in Hahn and Schilpp 1986, 139–54.
Giedymin, J. 1982. Science and Convention, Oxford: Pergamon.Google Scholar
Giedymin, J. 1991. “Geometrical and Physical Conventionalism of Henri Poincaré in Epistemological Formulation,” Studies in the History and Philosophy of Science 22, 1–22.CrossRefGoogle Scholar
Giere, R. N. and Richardson, A. W. (eds.) 1996. Origins of Logical Empiricism, Minnesota Studies in the Philosophy of Science 16, Minneapolis: University of Minnesota Press.Google Scholar
Glymour, C. 1971. “Theoretical Realism and Theoretical Equivalence,” in Buck, R. C. and Cohen, R. S. (eds.), Boston Studies in the Philosophy of Science 8, Dordrecht: Reidel, 275–88.Google Scholar
Glymour, C. 1972. “Topology, Cosmology and Convention,” Synthese 24, 195–218.CrossRefGoogle Scholar
Glymour, C. 1980. Theory and Evidence, Princeton, NJ: Princeton University Press.Google Scholar
Gödel, K. 1930. “Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik 37, 349–60; trans. S. Bauer-Mengelberg as “The Completeness of the Axioms of the Functional Calculus of Logic,” in van Heijenoort 1967, 582–91.CrossRefGoogle Scholar
Gödel, K. 1931. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I,” Monatshefte für Mathematik und Physik 38, 178–98; trans. J. van Heijenoort as “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” in van Heijenoort 1967, 596–616.Google Scholar
Gödel, K. 1953. “Is Mathematics Syntax of Language?” in Gödel 1995, 335–62.
Gödel, K. 1961. “The Modern Developments of the Foundations of Mathematics in the Light of Philosophy,” in Gödel 1995, 375–88.
Gödel, K. 1995. Kurt Godel: Collected Works, ed. Feferman, S.., vol. 3, Oxford: Oxford University Press.Google Scholar
Goldfarb, W. D. 1988. “Poincaré against the Logicists,” in Aspray and Kitcher 1988, 61–81.
Goldfarb, W. D. 1995. “Introductory Note to Gödel (1953),” in Gödel 1995, 324–34.
Goldfarb, W. D. 1996. “The Philosophy of Mathematics in Early Positivism,” in Giere and Richardson 1996, 213–30.
Goldfarb, W. and Ricketts, T. 1992. “Carnap and the Philosophy of Mathematics,” in Bell and Vossenkuhl 1992, 61–78.
Gould, C. C. and Cohen, R. S. (eds.) 1994. Artifacts, Representations and Social Practice, Dordrecht: Kluwer.CrossRefGoogle Scholar
Grayling, A. C. 1998. An Introduction to Philosophical Logic, 3rd ed., Oxford: Blackwell.Google Scholar
Grassmann, H. 1844. Die lineale Ausdehnungslehre, Leipzig: Otto Wigand Verlag; trans. in Grassmann 1995, 9–297.Google Scholar
Grassmann, H. 1995. A New Branch of Mathematics, The Ausdehnungslehre of 1844 and Other Works; trans. L. C. Kannenberg, Chicago and La Salle, IL: Open Court.Google Scholar
Greene, B. 1999. The Elegant Universe, New York: W. W. Norton.Google Scholar
Greene, B. 2004. The Fabric of the Cosmos,New York: Knopf.Google Scholar
Greffe, J. L., Heinzmann, G. and Lorenz, K. (eds.) 1996. Henri Poincaré, Science and Philosophy, International Congress Nancy 1994, Berlin: Akademie Verlag; Paris: Albert Blanchard.Google Scholar
Grünbaum, A. 1962. “Geometry, Chronometry, and Empiricism,” in Feigl and Maxwell 1962, 405–526.
Grünbaum, A. 1968. Geometry and Chronometry, Minneapolis: University of Minnesota Press.Google Scholar
Grünbaum, A. 1973. Philosophical Problems of Space and Time, 2nd ed., Boston Studies in the Philosophy of Science 12, Dordrecht: Reidel.CrossRefGoogle Scholar
Grünbaum, A. 1976. “The Duhemian Argument,” in Harding 1976, 116–31.
Hacker, P. M. S. 1992. “Wittgenstein on Frazer's “Golden Bough,” Iyyun 41, 277–300.Google Scholar
Hahn, L. E. and Schilpp, P. A. (eds.) 1986. The Philosophy of W. V. Quine, Library of Living Philosophers 18, La Salle, IL: Open Court.Google Scholar
Hale, B. and Wright, C. 2000. “Implicit Definition and the A Priori,” in Boghossian and Peacocke 2000, 286–319.
Harding, S. (ed.) 1976. Can Theories Be Refuted?Dordrecht: Reidel.CrossRefGoogle Scholar
Hawking, S. W. and Israel, W. (eds.) 1979. General Relativity, Cambridge: Cambridge University Press.Google Scholar
Healey, R. 1987. “Critical Review of Michael Friedman's Foundations of Space-Time Theories,” Noûs 21, 595–601.CrossRefGoogle Scholar
Held, A. (ed.) 1980. General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, New York: Plenum.Google Scholar
Hellman, G. 1989. Mathematics without Numbers, Oxford: Clarendon.Google Scholar
Helmholtz, H.. [1847] 1882. “Über die Erhaltung der Kraft,” in Wissenschaftliche Abhandlungen, 1, Leipzig: Johann Ambrosius Barth, 12–75.Google Scholar
Helmholtz, H.. 1876. “The Origin and Meaning of Geometrical Axioms,” Mind 1, 301–21. Also in Ewald 1996, vol. 2, 663–85.CrossRefGoogle Scholar
Hempel, C. G. 1958. “The Theoretician's Dilemma: A Study in the Logic of Theory Construction,” in Hempel, Aspects of Scientific Explanation,New York: Free Press, 1965, 173–226.Google Scholar
Henkin, L. 1950. “Completeness in the Theory of Types,” Journal of Symbolic Logic 15, 81–91.CrossRefGoogle Scholar
Hertz, H. [1894] 1956. Die Principien der Mechanik, Leipzig: Barth; trans. D. E. Jones and J. T. Walley as The Principles of Mechanics, New York: Dover.Google Scholar
Hilbert, D. [1899] 1902. “Grundlagen der Geometrie,” in Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen,Leipzig: Teubner; trans. E. J. Townsend as The Foundations of Geometry, Chicago: Open Court.Google Scholar
Hilbert, D. [1899a] 1971. Grundlagen der Geometrie, 10th ed., Leipzig: Teubner; trans. Leo Unger as Foundations of Geometry, 2nd ed. revised and expanded by Paul Bernays, La Salle, IL: Open Court.Google Scholar
Hilbert, D. 1905. “Über die Grundlagen der Logik und der Arithmetik,” Verhandlungen des Dritten Internationalen Mathematiker-Kongresses vom 8 bis 13 August 1904,Leipzig: Teubner, 174–85; trans. Beverly Woodward as “On the Foundations of Logic and Arithmetic” in van Heijenoort 1967, 130–8.Google Scholar
Hilbert, D. 1922. “Neubegründung der Mathematik; Erste Mitteilung,” in Gesammelte Abhandlungen, Berlin: Springer, 1932–5, 3, 157–77; trans. W. Ewald as “The New Grounding of Mathematics” in Ewald 1996, 2, 1115–34.Google Scholar
Hilbert, D. 1926. “Über das Unendliche,” Mathematische Annalen 95, 161–90; trans. S. Bauer-Mengelberg as “On the Infinite” in van Heijenoort 1967, 367–92.CrossRefGoogle Scholar
Hintikka, J. (ed.) 1975. Rudolf Carnap, Logical Empiricist, Synthese Library 83, Dordrecht: Reidel.CrossRefGoogle Scholar
Hintikka, J. 1990. “Quine as a Member of the Tradition of the Universality of Language,” in Barrett and Gibson 1990, 159–74.
Hintikka, J. 1992. “Carnap's Work in the Foundations of Logic and Mathematics in a Historical Perspective,” Synthese 93, 167–89.CrossRefGoogle Scholar
Hintikka, J. 1993. “Ludwig's Apple Tree: On the Philosophical Relations between Wittgenstein and the Vienna Circle,” in Stadler 1993.CrossRef
Hintikka, J. 2001. “Ernst Mach at the Crossroads of Twentieth-Century Philosophy,” in Floyd and Shieh 2001, 81–100.
Hintikka, M. B. and Hintikka, J. 1986. Investigating Wittgenstein, Oxford: Basil Blackwell.Google Scholar
Hiskes, A. L. 1986. “Friedman on the Foundations of Space-Time Theories,” Erkenntnis 25, 111–26.Google Scholar
Hoefer, C. 1994. “Einstein's Struggle for a Machian Gravitation Theory,” Studies in the History and Philosophy of Science 25, 287–335.CrossRefGoogle Scholar
Horwich, P. 1997. “Implicit Definition, Analytic Truth, and Apriori Knowledge,” Noûs 31, 423–40.CrossRefGoogle Scholar
Howard, D. 1990. “Einstein and Duhem,” Synthese 83, 363–84.CrossRefGoogle Scholar
Howard, D. 1994. “Einstein, Kant, and the Origins of Logical Empiricism,” in Salmon and Wolters 1994, 45–105.
Howard, D. 1996. “Relativity, Eindeutigkeit, and Monomorphism: Rudolf Carnap and the Development of the Categoricity Concept in Formal Semantics,” in Giere and Richardson 1996, 115–64.
Howard, D. and Stachel, J. (eds.) 1989. Einstein and the History of General Relativity, Einstein Studies 1, Boston and Berlin: Birkhaüser.Google Scholar
Hylton, P. 2001 “‘The Defensible Province of Philosophy’: Quine's 1934 Lectures on Carnap,” in Floyd and Shieh 2001, 257–76.
James, W. [1907–9] 1955. Pragmatism, Cleveland: Meridian.Google Scholar
Kreisel, G. 1958. “Wittgenstein's Remarks on the Foundations of Mathematics,” British Journal for the Philosophy of Science 9, 135–58.CrossRefGoogle Scholar
Kretschmann, E. 1917. “Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie,” Annalen der Physik 53, 575–614.Google Scholar
Kripke, S. 1980. Naming and Necessity, Cambridge, MA: Harvard University Press.Google Scholar
Kripke, S. 1982. Wittgenstein on Rules and Private Language,Oxford: Basil Blackwell.Google Scholar
Kuhn, T. S. 1962. The Structure of Scientific Revolutions, 2nd ed., Chicago: University of Chicago Press, 1970.Google Scholar
Lakatos, I. (ed.) 1967. Problems in the Philosophy of Mathematics, Amsterdam: North-Holland.Google Scholar
Lakatos, I. 1981. Proofs and Refutations: The Logic of Mathematical Discovery, ed. Worrall, J. and Zahar, E., Cambridge: Cambridge University Press.Google Scholar
Laudan, L. 1976. “Grünbaum on ‘The Duhemian Argument,’” in Harding 1976, 155–61.
Laudan, L. 1977. Progress and Its Problems, Berkeley: University of California Press.Google Scholar
Laudan, L. 1990. Science and Relativism, Chicago: University of Chicago Press.Google Scholar
Laudan, L. and Leplin, J. 1991. “Empirical Equivalence and Underdetermination,” Journal of Philosophy 88, 449–72.CrossRefGoogle Scholar
Leonardi, P. and Santambrogio, M. (eds.) 1995. On Quine, Cambridge: Cambridge University Press.Google Scholar
Levin, Y. 1995. “Synthetic Apriority,” Erkenntnis 43, 137–50.CrossRefGoogle Scholar
Lewis, C. I. and Langford, C. H. 1932. Symbolic Logic, New York: Century.Google Scholar
Lewis, D. 1969. Convention, Cambridge, MA: Harvard University Press.Google Scholar
Longino, H. E. 2002. The Fate of Knowledge, Princeton, NJ: Princeton University Press.Google Scholar
Löwenheim, L. 1915. “Über Möglichkeiten im Relativkalkül,” Mathematische Annalen 76, 447–70; trans. S. Bauer-Mengelberg as “On Possibilities in the Calculus of Relatives” in van Heijenoort 1967, 228–51.CrossRefGoogle Scholar
Maiocchi, R. 1990. “Pierre Duhem's The Aim and Structure of Physical Theory: A Book against Conventionalism,” Synthese 83, 385–400.CrossRefGoogle Scholar
Malament, D. B. 1977. “Causal Theories of Time and the Conventionality of Simultaneity,” Nous 11, 293–300.CrossRefGoogle Scholar
Malament, D. B. (ed.) 2002. Reading Natural Philosophy, Chicago and La Salle, IL: Open Court.Google Scholar
Margalit, A. 1992. “Wittgenstein on The Golden Bough,” Iyyun 41, 301–18.Google Scholar
Martin, R. N. D. 1982. “Darwin and Duhem” [Review of Paul 1979], History of Science 20, 64–75.CrossRefGoogle Scholar
Martin, R. N. D. 1990. “Duhem and the Origins of Statics: Ramifications of the Crisis of 1903–4,” Synthese 83, 337–55.CrossRefGoogle Scholar
Mates, B. 1972. Elementary Logic, 2nd ed., New York: Oxford University Press.Google Scholar
Mauthner, F. 1923. Beiträge zu einer Kritik der Sprache, 3 vols., 3rd ed., Leipzig: F. Meiner Verlag.Google Scholar
McDowell, J. 1998. Mind, Value and Reality, Cambridge, MA: Harvard University Press.Google Scholar
McMullin, E. 1990. “Comment: Duhem's Middle Way,” Synthese 83, 421–30.CrossRefGoogle Scholar
Misner, W. C., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation, San Francisco: W. H. Freeman.Google Scholar
Monk, R. 1990. Ludwig Wittgenstein: The Duty of Genius, London: Vintage.Google Scholar
Moore, G. E. 1921–2. “External and Internal Relations,” Proceedings of the Aristotelian Society 20, 40–62. Also in Moore, Philosophical Studies, London: K. Paul, Trench, Trubner, 1922, 276–309.CrossRefGoogle Scholar
Moore, G. E. 1954. “Wittgenstein's Lectures in 1930–33,” Mind 63, 1–15, 289–315; 64 1–27. Also in Wittgenstein 1993, 46–114.CrossRefGoogle Scholar
Morrison, M. 2000. Unifying Scientific Theories,Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mueller, A. and Fine A. 2005. “Realism, Beyond Miracles,” in Ben-Menahem 2005, 83–124.
Myhill, T. R. 1953. “On the Ontological Significance of the Löwenheim-Skolem Theorem,” in White, M. (ed.), Academic Freedom, Logic and Religion, APA Eastern Division Meeting, Philadelphia: University of Pennsylvania Press, 57–70.CrossRefGoogle Scholar
Nagel, E. 1939. “The Formation of Modern Conceptions of Formal Logic in the Development of Geometry,” Osiris 7, 142–224.CrossRefGoogle Scholar
Nagel, E. 1961. The Structure of Science, London: Routledge and Kegan Paul.Google Scholar
Narlikar, J. V. and Padmanabhan, T. 1986. Gravity, Gauge Theories and Quantum Cosmology, Dordrecht: Reidel.CrossRefGoogle Scholar
Norton, J. 1989. “What Was Einstein's Principle of Equivalence?” in Howard and Stachel 1989, 5–47.
Norton, J. 1993. “General Covariance and the Foundations of General Relativity: Eight Decades of Dispute,” Reports of Progress in Physics 56, 791–858.CrossRefGoogle Scholar
Norton, J. (1995). “Did Einstein Stumble? The Debate over General Covariance,” Erkenntnis 42, 223–45.CrossRefGoogle Scholar
Nye, M. J. 1976. “The Moral Freedom of Man and the Determinism of Nature: The Catholic Synthesis of Science and History in the Revue des Questions Scientifiques,” British Journal for the History of Science 9, 274–92.CrossRefGoogle Scholar
O'Raifeartaigh, L. (ed.) 1972. General Relativity: Papers in Honour of J. L. Synge, Oxford: Clarendon.Google Scholar
Padoa, A. 1901. “Essai d'une théorie algébrique des nombres entiers, précédé d'une introduction logique à une théorie déductive quelconque,” Bibliothèque du Congrès international de philosophie, 3, Paris: A Colin, 309–65; trans. J. van Heijenoort in van Heijenoort 1967, 118–23.Google Scholar
Pais, A. 1982. Subtle Is the Lord: The Science and Life of Albert Einstein, Oxford: Clarendon.Google Scholar
Parsons, C. 1990. “The Structuralist View of Mathematical Objects,” Synthese 84, 303–46.CrossRefGoogle Scholar
Parsons, C. 1992. “The Transcendental Aesthetic,” in Guyer, P. (ed.), The Cambridge Companion to Kant, Cambridge: Cambridge University Press, 62–100.CrossRefGoogle Scholar
Parsons, C. 1995. “Quine and Godel on Analyticity,” in Leonardi and Santambrogio 1995, 297–313.
Pasch, M. 1882. Vorlesungen über neuere Geometrie, 2nd ed., 1912, Leipzig: Teubner.Google Scholar
Pasch, M. 1892. “Über die Einführung der irrationalen Zahlen,” Mathematische Annalen 40, 149–52.CrossRefGoogle Scholar
Paul, H. W. 1979. The Edge of Contingency, Gainesville: University of Florida Press.Google Scholar
Peano, G. 1889. I Principii di Geometria logicamente esposti,Torino: Fratelli Bocca.Google Scholar
Pears, D. 1987. The False Prison,Oxford: Clarendon.CrossRefGoogle Scholar
Penrose, R. 2004. The Road to Reality, London: Jonathan Cape.Google Scholar
Pieri, M. 1901. “Sur la géométrie envisagée comme un système purement logique,” In Bibliothèque du Congrès international de philosophie, 3, Paris: A Colin, 367–404.Google Scholar
Pitowsky, I. 1984. “Unified Field Theory and the Conventionality of Geometry,” Philosophy of Science 51, 685–9.CrossRefGoogle Scholar
Pitowsky, I. 1994. “On the Concept of Proof in Modern Mathematics,” unpublished.
Poincaré, H. 1891. “Sur l'expérience de M.Wiener,” Comptes rendus des séances de l'Académie des sciences 112, 325–9.Google Scholar
Poincaré, H. 1892. Théorie mathématique de la lumière, 2 vols., Paris: G. Carré.Google Scholar
Poincaré, H. 1898. “On the Foundations of Geometry,” The Monist 9, 1–43.Google Scholar
Poincaré, H. 1898a. “De la mesure du temps,” Revue de métaphysique et de morale 6, 1–13.Google Scholar
Poincaré, H. 1899. “Des fondements de la géométrie,” Revue de métaphysique et de morale 7, 251–79.Google Scholar
Poincaré, H. 1900. “Du rôle de l'intuition et de la logique en mathématiques,” in Compte rendu du deuxième Congrès international des mathématiques tenu à Paris du 6 au 12 août 1900,Paris: Gauthier-Villars, 115–30; trans. G. B. Halsted as “Intuition and Logic in Mathematics” in Ewald 1996, vol. 2, 1012–20.Google Scholar
Poincaré, H. 1901. Électricité et optique, Paris: Gauthier-Villars.Google Scholar
Poincaré, H. [1902] 1952. La Science et l'hypothèse, Paris: Flammarion; trans. W. S. Greenstreet as Science and Hypothesis, New York: Dover.Google Scholar
Poincaré, H. 1902a. “Compte rendu et analyses” [Review of Hilbert 1899], Bulletin des Sciences Mathematiques, 2 ser. 26, 249–72; trans. E. Huntington in Bulletin of the American Mathematical Society 10, 1903, 1–23.Google Scholar
Poincaré, H. 1905–6. “Les Mathématiques et la logique,” Revue de métaphysique et de morale 13, 815–35; 14, 17–34, 294–317; trans. G. B. Halsted as “Mathematics and Logic” in Ewald 1996, vol. 2, 1021–1074.Google Scholar
Poincaré, H. 1905a. “The Principles of Mathematical Physics,” The Monist 15, 1–24.Google Scholar
Poincaré, H. [1908] 1956. Science et méthode, Paris: Flammarion; trans. F. Maitland as Science and Method, New York: Dover.Google Scholar
Poincaré, H. 1913. The Foundations of Science, Lancaster, PA: Science Press.Google Scholar
Poincaré, H. [1913a] 1963. Dernières pensées, Paris: Flammarion; trans. Bolduc, J. W. as Mathematics and Science: Last Essays, New York: Dover.Google Scholar
Pollock, J. L. 1967. “Mathematical Proof,” American Philosophical Quarterly 4, 238–44.Google Scholar
Popper, K. [1934] 1959. Logik der Forschung, Vienna: Julius Springer Verlag, 1935; trans. by the author as The Logic of Scientific Discovery,London: Hutchinson.Google Scholar
Popper, K. 1963. “Science: Conjectures and Refutations,” in Conjectures and Refutations, New York: Harper & Row, 33–65.Google Scholar
Prior, A. N. 1960. “The Runabout Inference-Ticket,” Analysis 21, 38–9.CrossRefGoogle Scholar
Proust, J. 1987. “Formal Logic as Transcendental in Wittgenstein and Carnap,” Nous 21, 500–20.CrossRefGoogle Scholar
Putnam, H. 1963. “An Examination of Grünbaum's Philosophy of Space and Time,” in Baumrin, B. (ed.), The Delaware Seminar in Philosophy of Science, New York: Interscience Publishers, 205–55, reprinted as “An Examination of Grünbaum's Philosophy of Geometry” in Putnam 1975, 93–129.Google Scholar
Putnam, H. 1965. “Trial and Error Predicates and the Solution to a Problem of Mostowski,” Journal of Symbolic Logic 30, 49–57.CrossRefGoogle Scholar
Putnam, H. 1967. “Mathematics Without Foundations,” Journal of Philosophy 64, 5–22. Also in Putnam 1975, 43–59.CrossRefGoogle Scholar
Putnam, H. 1973. “Explanation and Reference,” in Pearce, G. and Maynard, P. (eds.), Conceptual Change, Dordrecht: Reidel, 199–221. Also in Putnam 1975a, 196–214.CrossRefGoogle Scholar
Putnam, H. 1974. “The Refutation of Conventionalism,” Noûs 8, 25–40; revised version in Putnam 1975a, 153–91.CrossRefGoogle Scholar
Putnam, H. 1975. Mathematics, Matter and Method, Philosophical Papers, vol. 1, Cambridge: Cambridge University Press.Google Scholar
Putnam, H. 1975a. Mind, Language and Reality, Philosophical Papers, vol. 2, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Putnam, H. 1975b. “The Meaning of ‘Meaning,’” in Gunderson, K. (ed.), Language, Mind and Knowledge, Minnesota Studies in the Philosophy of Science 7, Minneapolis: University of Minnesota Press, 131–93. Also in Putnam 1975a, 215–71.Google Scholar
Putnam, H. 1978. Meaning and the Moral Sciences, London: Routledge.Google Scholar
Putnam, H. 1979. “Analyticity and Apriority: Beyond Wittgenstein and Quine,” in French, P., Uehling, T., and Wettstein, H. (eds.), Midwest Studies in Philosophy 4, Minneapolis: University of Minnesota Press, 423–41. Also in Putnam 1983, 98–114.Google Scholar
Putnam, H. 1980. “Models and Reality,” Journal of Symbolic Logic 45, 464–82. Also in Putnam 1983, 1–24.CrossRefGoogle Scholar
Putnam, H. 1981. Reason, Truth and History, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Putnam, H. 1983. Realism and Reason, Philosophical Papers, vol. 3, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Putnam, H. 1994. “Rethinking Mathematical Necessity,” in Words and Life, Cambridge, MA: Harvard University Press, 245–63.Google Scholar
Putnam, H. 2004. Ethics without Ontology, Cambridge, MA: Harvard University Press.Google Scholar
Quine, W. V. 1934. “Lectures on Carnap,” in Creath 1990, 47–103.
Quine, W. V. [1936] 1966. “Truth by Convention,” in Lee, O. H. (ed.), Philosophical Essays for A. N. Whitehead, New York: Longmans, 90–124. Also in Quine 1966, 70–99.Google Scholar
Quine, W. V. 1937. “Is Logic a Matter of Words?” MS 102–61–05, Carnap Collection, Archives of Scientific Philosophy, University of Pittsburgh.
Quine, W. V. 1948. “On What There Is,” Review of Metaphysics 2, 21–38. Also in Quine 1953a, 1–19.Google Scholar
Quine, W. V. 1951Two Dogmas of Empiricism,” Philosophical Review 60, 20–43. Also in Quine 1953a, 20–46.CrossRefGoogle Scholar
Quine, W. V. 1951a. “Carnap's Views on Ontology,” Philosophical Studies 2, 65–72. Also in Quine 1966, 126–34.CrossRefGoogle Scholar
Quine, W. V. 1953. “Mr. Strawson on Logical Theory,” Mind 62, 433–51. Also in Quine 1966, 135–55.CrossRefGoogle Scholar
Quine, W. V. 1953a. From a Logical Point of View, Cambridge, MA: Harvard University Press.Google Scholar
Quine, W. V. 1960. “Carnap and Logical Truth,” Synthese 12, 350–74. Also in Schilpp 1963, 385–406 and Quine 1966, 100–125.CrossRefGoogle Scholar
Quine, W. V. 1960a. Word and Object, Cambridge, MA: MIT Press.Google Scholar
Quine, W. V. 1963. “On Simple Theories of a Complex World,” Synthese 15, 107–111. Also in Quine 1966, 242–5.CrossRefGoogle Scholar
Quine, W. V. 1964. “Necessary Truth,” in Quine 1966, 48–56.
Quine, W. V. 1964a. “Implicit Definition Sustained,” Journal of Philosophy 61, 71–74. Also in Quine 1966, 195–8.CrossRefGoogle Scholar
Quine, W. V. 1966. The Ways of Paradox, New York: Random House.Google Scholar
Quine, W. V. 1968. “Ontological Relativity,” Journal of Philosophy 65, 185–212. Also in Quine 1969, 26–68.CrossRefGoogle Scholar
Quine, W. V. 1969. Ontological Relativity and Other Essays, New York: Columbia University Press.Google Scholar
Quine, W. V. 1969a. “Epistemology Naturalized,” in Quine 1969, 69–89.
Quine, W. V. 1970. Philosophy of Logic, Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Quine, W. V. 1970a. “On the Reasons for Indeterminacy of Translation,” Journal of Philosophy 67, 178–83.CrossRefGoogle Scholar
Quine, W. V. 1975. “On Empirically Equivalent Systems of the World,” Erkenntnis 9, 313–28.CrossRefGoogle Scholar
Quine, W. V. 1981. Theories and Things, Cambridge, MA: Harvard University Press.Google Scholar
Quine, W. V. 1986. “Reply to Roger F. Gibson, Jr,” in Hahn and Schilpp 1986, 155–8.
Quine, W. V. 1990 “Three Indeterminacies,” in Barrett and Gibson 1990, 1–16.
Quine, W. V. 1990a. “Comment on Hintikka,” in Barrett and Gibson 1990, 176–7.
Quine, W. V. 1991. “Two Dogmas in Retrospect,” Canadian Journal of Philosophy 21, 265–74.CrossRefGoogle Scholar
Quine, W. V. 1992. Pursuit of Truth, 2nd ed., Cambridge, MA: Harvard University Press.Google Scholar
Quine, W. V. 1995. From Stimulus to Science, Cambridge, MA: Harvard University Press.Google Scholar
Quine, W. V. 1995a. “Reactions,” in Leonardi and Santambrogio 1995, 347–61.
Ramsey, F. P. 1931. The Foundation of Mathematics and Other Logical Essays, London: Kegan Paul.Google Scholar
Reichenbach, H. [1920] 1965. Relativitätstheorie und Erkenntnis Apriori,Berlin: Springer; trans. M. Reichenbach as The Theory of Relativity and A Priori Knowledge, Los Angeles: University of California Press.CrossRefGoogle Scholar
Reichenbach, H. [1922] 1978. Der gegenwärtige Stand der Relativitätsdiskussion, Logos 10, 316–78; trans. M. Reichenbach as “The Present State of the Discussion on Relativity: A Critical Investigation,” in Hans Reichenbach; Selected Writings 1909–1953, vol. 2, ed. M. Reichenbach and R. Cohen, Dordrecht: Reidel, 3–47.
Reichenbach, H. [1928] 1958. Philosophie der Raum-Zeit-Lehre,Berlin: de Gruyter; trans. M. Reichenbach and J. Freund as The Philosophy of Space and Time, New York: Dover.CrossRefGoogle Scholar
Reichenbach, H. 1938. Experience and Prediction, Chicago: University of Chicago Press.Google Scholar
Reichenbach, H. 1949. “The Philosophical Significance of the Theory of Relativity,” in Schilpp 1949, 287–312.
Reichenbach, H. 1971. The Direction of Time, Berkeley: University of California Press.Google Scholar
Ricketts, T. G. 1985. “Frege, the Tractatus and the Logocentric Predicament,” Noûs 19, 3–15.CrossRefGoogle Scholar
Ricketts, T. G. 1994. “Carnap's Principle of Tolerance, Empiricism and Conventionalism,” in Clark and Hale 1994, 176–200.
Ricketts, T. G. 1996. “Carnap: From Logical Syntax to Semantics,” in Giere and Richardson 1996, 231–50.
Riemann, B. G. F. 1868. “Über die Hypothesen, welche der Geometrie zu Grunde liegen,” in Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13; trans. W. K. Clifford as “On the Hypotheses which Lie at the Foundation of Geometry,” in Ewald 1996, vol. 2, 652–61.Google Scholar
Robinson, A. 1956. “On Beth's Test in the Theory of Definitions,” Journal of Symbolic Logic 21, 220–1.Google Scholar
Russell, B. 1897. An Essay on the Foundation of Geometry, Cambridge: Cambridge University Press.Google Scholar
Russell, B. 1898. “Les axiomes propres à Euclide: sont-ils empiriques?Revue de métaphysique et de morale 6, 759–76.Google Scholar
Russell, B. 1899. “Sur les axiomes de la géométrie,” Revue de métaphysique et de morale 7, 684–707.Google Scholar
Russell, B. 1919. Introduction to Mathematical Philosophy, London: George Allen and Unwin.Google Scholar
Ryckman, T. A. 1992. “P(oint) C(oincidence) Thinking: The Ironic Attachment of Logical Empiricism to General Relativity,” Studies in the History and Philosophy of Science 23, 471–97.CrossRefGoogle Scholar
Ryckman, T. A. 1994. “Weyl, Reichenbach and the Epistemology of Geometry,” Studies in the History and Philosophy of Science 25, 831–70.CrossRefGoogle Scholar
Ryckman, T. A. 1999. “World Geometries: Weyl and Eddington,” paper presented at the Bar-Hillel Colloquium for the History, Philosophy and Sociology of Science at the Hebrew University of Jerusalem, May 26, 1999.
Ryckman, T. A. 2005. The Reign of Relativity, Oxford: Oxford University Press.CrossRefGoogle Scholar
Salmon, W. (ed.) 1979. Hans Reichenbach: Logical Empiricist, Dordrecht: Reidel.CrossRefGoogle Scholar
Salmon, W. and Wolters, G. (eds.) 1994. Language, Logic, and the Structure of Scientific Theories, Pittsburgh: University of Pittsburgh Press; Konstanz: Universitätsverlag.Google Scholar
Sarkar, S. 1992. “‘The Boundless Ocean of Unlimited Possibilities’: Logic in Carnap's Logical Syntax of Language,” Synthese 93, 191–237.CrossRefGoogle Scholar
Schilpp, P. A. (ed.) 1949. Albert Einstein: Philosopher-Scientist, Library of Living Philosophers, La Salle, IL: Open Court.Google Scholar
Schilpp, P. A. (ed.) 1963. The Philosophy of Rudolf Carnap, Library of Living Philosophers, La Salle, IL: Open Court.Google Scholar
Schlick, M. [1917] 1920. Raum und Zeit in der gegenwärtigen Physik, 3rd ed., Berlin: Springer; trans. H. L. Brose as Space and Time in Contemporary Physics, Oxford: Clarendon.CrossRefGoogle Scholar
Schlick, M. [1925] 1974. Allgemeine Erkenntnislehre, 3rd ed., Berlin: Julius Springer; trans. A. E. Blumberg as General Theory of Knowledge, Vienna and New York: Springer.CrossRefGoogle Scholar
Schlick, M. 1979. Philosophical Papers, ed. Mulder, H. I. and Velde, B. F. B., trans. P. Heath, W. Sellars, H. Feigl, and M. Brodbeck, 2 vols., Dordrecht: Reidel.Google Scholar
Schrödinger, E. 1950. Space-Time Structure. Cambridge: Cambridge University Press.Google Scholar
Shanker, S. G. 1987. Wittgenstein and the Turning-Point in the Philosophy of Mathematics, Albany: SUNY Press.Google Scholar
Shapiro, S. 1985. “Second-Order Languages and Mathematical Practice,” Journal of Symbolic Logic 50, 714–42. Also in Shapiro 1996, 89–118.CrossRefGoogle Scholar
Shapiro, S. (ed.) 1996. The Limits of Logic, Aldershot, England and Brookfield VT: Dartmouth.Google Scholar
Sher, G. 1996. “Did Tarski Commit ‘Tarski's Fallacy’?Journal of Symbolic Logic 61, 653–86.CrossRefGoogle Scholar
Sher, G. 1998–9. “On the Possibility of a Substantive Theory of Truth,” Synthese 117, 133–92.CrossRefGoogle Scholar
Sieg, W. 2002. “Beyond Hilbert's Reach,” in Malament 2002, 363–405.
Sklar, L. 1974. Space, Time, and Spacetime, Berkeley: University of California Press.Google Scholar
Sklar, L. 1985. Philosophy and Spacetime Physics, Berkeley: University of California Press.Google Scholar
Skolem, Th. 1920. “Logische-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen,” in Skolem 1970, 103–36; trans. S. Bauer-Mengelberg as “Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. Löwenheim and generalizations of the theorem,” in van Heijenoort 1967, 254–63.
Skolem, Th. 1922. “Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre,” in Skolem 1970, 137–52; trans. S. Bauer-Mengelberg as “Some remarks on axiomatised set theory” in van Heijenoort 1967, 290–301.
Skolem, Th. 1929. “Über die Grundlagendiskussionen in der Mathematik,” in Skolem 1970, 207–25.
Skolem, Th. 1970. Selected Works in Logic, ed. Fenstad, J. E., Oslo: Universitetsforlaget.Google Scholar
Smolin, L. 2001. Three Roads to Quantum Gravity, New York: Basic Books.Google Scholar
Sorabji, R. 2000. Emotion and Peace of Mind: From Stoic Agitation to Christian Temptation, Oxford: Oxford University Press.Google Scholar
Stachel, J. 1989. “Einstein's Search for General Covariance,” in Howard and Stachel 1989, 63–100.
Stachel, J. 1994. “Changes in the Concepts of Space and Time Brought About by Relativity,” in Gould and Cohen 1994, 141–62.
Stachel, J. 2002. “‘The Relations between Things’ versus ‘The Things between Relations’: The Deeper Meaning of the Hole Argument,” in Malament 2002, 231–66.
Stachel, J. 2002a. Einstein from ‘B’ to ‘Z,’Berlin: Birkhäuser.Google Scholar
Stachel, J. 2003. “A Brief History of Space-Time,” in Ciufolini et al. 2003, 15–34.
Stadler, F. (ed.) 1993. Scientific Philosophy: Origins and Developments, Dordrecht: Kluwer.CrossRefGoogle Scholar
Stein, H. 1977. “Some Philosophical Prehistory of General Relativity,” in Earman, J., Glymour, C., and Stachel, J. (eds.) Foundations of Spacetime Theories, Minnesota Studies in the Philosophy of Science 8, Minneapolis: University of Minnesota Press, 3–49.Google Scholar
Stein, H. 1988. “Logos, Logic, and Logistiké: Some Philosophical Remarks on Nineteenth-Century Transformation of Mathematics,” in Aspray and Kitcher 1988, 238–59.
Stein, H. 1992. “Was Carnap Entirely Wrong, After All?Synthese 93, 275–95.CrossRefGoogle Scholar
Steiner, M. 1996. “Wittgenstein: Mathematics, Regularities, Rules,” in Morton, A. and Stich, S. P. (eds.), Benacerraf and His Critics,Oxford: Blackwell, 190–212.Google Scholar
Steiner, M. 1998. The Applicability of Mathematics as a Philosophical Problem, Cambridge, MA: Harvard University Press.Google Scholar
Steiner, M. 2001. “Wittgenstein as His Own Worst Enemy: The Case of Godel's Theorem,” Philosophia Mathematica (ser. 3) 9, 257–79.CrossRefGoogle Scholar
Steiner, M. (2005). “Empirical Regularities in Wittgenstein,” unpublished manuscript.
Stroud, B. 1965. “Wittgenstein and Logical Necessity,” Philosophical Review 74, 504–18.CrossRefGoogle Scholar
Stroud, B. 1969. “Conventionalism and the Indeterminacy of Translation,” in Davidson, D. and Hintikka, J. (eds.), Words and Objections,Dordrecht: Reidel.Google Scholar
Synge, J. L. 1960. Relativity: The General Theory, Amsterdam: North Holland.Google Scholar
Tarski, A. 1940. “The Completeness of Elementary Algebra and Geometry,” in Tarski 1986, vol. 4, 289–346.
Tarski, A. 1951. A Decision Method for Elementary Algebra and Geometry, Berkeley: University of California Press.Google Scholar
Tarski, A. 1956. Logic, Semantics, Metamathematics, Oxford: Oxford University Press.Google Scholar
Tarski, A. 1986. Collected Papers, ed. Givant, S. R. and McKenzie, R. N., Basel: Birkhäuser.
Tharp, L. H. 1975. “Which Logic Is the Right Logic?Synthese 31, 1–21. Also in Shapiro 1996, 47–68.CrossRefGoogle Scholar
Thorne, K. S. 1996. Black Holes and Time Warps, New York: W. W. Norton.Google Scholar
Thorne, K. S., LeeD. L., D. L., and Lightman, A. P. 1973. “Foundations for a Theory of Gravitation Theories,” Physical Review D7 3563–78.Google Scholar
Torretti, R. 1978. Philosophy of Geometry from Riemann to Poincaré, Dordrecht: Reidel.CrossRefGoogle Scholar
Torretti, R. [1983] 1996. Relativity and Geometry, 1st ed., Oxford: Pergamon; 2nd ed., New York: Dover.Google Scholar
Trautman, A. 1980. “Fiber Bundles, Gauge Fields, and Gravitation,” in Held 1980, vol. 1, 287–308.
Tymoczko, T. 1989. “In Defense of Putnam's Brains,” Philosophical Studies 57, 281–97.CrossRefGoogle Scholar
Van Fraassen, B. C. 1997. “Putnam's Paradox: Metaphysical Realism Revamped and Evaded,” in Tomberlin, J. E. (ed.), Mind, Causation and World, Philosophical Perspectives, 11, Oxford: Blackwell, 17–42.Google Scholar
Heijenoort, J. (ed.) 1967. From Frege to Gödel, A Source Book in Mathematical Logic 1879–1931, Cambridge, MA: Harvard University Press.Google Scholar
Veblen, O. 1904. “A System of Axioms for Geometry,” Transactions of the American Mathematical Society 5, 343–84.CrossRefGoogle Scholar
Veronese, G. 1894. Grundzüge der Geometrie, Leipzig: B. G. Trubner.Google Scholar
Wright, G. H. 1971. Explanation and Understanding, London: Routledge & Kegan Paul.Google Scholar
Waismann, F. 1979. Ludwig Wittgenstein and the Vienna Circle, ed. B. McGuinness; tr. J. Schulte and B. McGuinness, Oxford: Basil Blackwell.Google Scholar
Wang, H. 1970. “A Survey of Skolem's Work in Logic,” in Skolem 1970, 17–52.
Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, New York: John Wiley & Sons.Google Scholar
Weinberg, S. 2001. “Can Science Explain Everything? Anything?New York Review of Books, vol. 48, no. 9.Google Scholar
Weingard, R. and Smith, G. 1986. “Critical Notice: Michael Friedman's Foundations of Space-Time Theories,” Philosophy of Science 53, 286–99.CrossRefGoogle Scholar
Weyl, H. [1921] 1952. Raum-Zeit-Materie, 4th ed., Berlin: Springer; trans. Brose, H. L. as Space-Time-Matter, London: Methuen; New York: Dover.CrossRefGoogle Scholar
Weyl, H. 1922. “Die Relativitätstheorie auf der Naturforscherversammlung in Bad Nauheim,” Jahresbericht der Deutschen Mathematiker-Vereinigung 31, 51–63.Google Scholar
Wheeler, J. A. 1962. Geometrodynamics, New York: Academic Press.Google Scholar
Whitely, C. I. 1936. “Truth by Convention: A Symposium,” Analysis 4, 22–28.Google Scholar
Wiener, O. 1890. “Stehende Lichtwellen und die Schwingungsrichtung polarisierten Lichtes,” Wiedemann's Annalen 40, 203–13.Google Scholar
Will, C. M. 1979. “The Confrontation between Gravitation Theory and Experiment,” in Hawking and Israel 1979, 24–89.
Will, C. M. 1993. Theory and Experiment in Gravitational Physics, rev. ed., Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wittgenstein, L. [1921] 1961. “Logisch-Philosophische Abhandlung,” Annalen der Naturphilosophie 14, 184–262; trans. C. K. Ogden and F. P. Ramsey as Tractatus Logico-Philosophicus, London: Kegan Paul, Trench, Trubner, 1922; trans. D. F. Pears and B. F. McGuinness, London: Routledge and Kegan Paul.
Wittgenstein, L. 1953. Philosophical Investigations (PI); trans. G. E. M. Anscombe, ed. Anscombe, G. E. M. and Rhees, R., Oxford: Basil Blackwell.Google Scholar
Wittgenstein, L. [1956] 1978. Remarks on the Foundations of Mathematics (RFM), ed. Wright, G. H., Rhees, R., and Anscombe;, G. E. M. trans. G. E. M. Anscombe, Oxford: Basil Blackwell; 3rd rev. edition 1978.Google Scholar
Wittgenstein, L. 1961. Notebooks 1914–16, ed. Wright, G. H. and Anscombe, G. E. M., Oxford: Basil Blackwell.Google Scholar
Wittgenstein, L. 1974. Philosophical Grammar (PG), ed. Rhees, R.; trans. A. Kenny, Oxford: Basil Blackwell.Google Scholar
Wittgenstein, L. 1976. Lectures on the Foundations of Mathematics (LFM), ed. Diamond, C., Ithaca, NY: Cornell University Press.Google Scholar
Wittgenstein, L. 1977. On Certainty, ed. Anscombe, G. E. H. and Wright, G. H.; trans. D. Paul and G. E. M. Anscombe, Oxford: Basil Blackwell.Google Scholar
Wittgenstein, L. 1979. Remarks on Frazer's Golden Bough, ed. Rhees, R., Retford: Brynmill. Also in Wittgenstein 1993, 119–55.Google Scholar
Wittgenstein, L. 1979a. Wittgenstein's Lectures, Cambridge, 1932–1935, ed. Ambrose, A., Oxford: Basil Blackwell.Google Scholar
Wittgenstein, L. 1980. Culture and Value; trans. P. Winch, Chicago: University of Chicago Press.Google Scholar
Wittgenstein, L. 1993. Philosophical Occasions (PO), ed. Klagge, J. and Nordmann, A., Indianapolis: Hackett.Google Scholar
Wittgenstein, L. 1993a. “Philosophy,” in Wittgenstein 1993, 160–99.
Wittgenstein, L. 1993b. “Notes for the ‘Philosophical Lecture,’” in Wittgenstein 1993, 447–58.
Wright, C. 1980. Wittgenstein on the Foundations of Mathematics, London: Duckworth.Google Scholar
Zahar, E. G. 1997. “Poincaré's Philosophy of Geometry, or Does Geometric Conventionalism Deserve its Name?Studies in the History and Philosophy of Modern Physics 28, 183–218.CrossRefGoogle Scholar
Zahar, E. G. 2001. Poincaré's Philosophy, Chicago and La Salle, IL: Open Court.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Yemima Ben-Menahem, Hebrew University of Jerusalem
  • Book: Conventionalism
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511584404.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Yemima Ben-Menahem, Hebrew University of Jerusalem
  • Book: Conventionalism
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511584404.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Yemima Ben-Menahem, Hebrew University of Jerusalem
  • Book: Conventionalism
  • Online publication: 04 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511584404.009
Available formats
×