Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T15:20:59.519Z Has data issue: false hasContentIssue false

1 - Genetics of glioma

Published online by Cambridge University Press:  05 March 2016

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Duke Glioma Handbook
Pathology, Diagnosis, and Management
, pp. 1 - 23
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ostrom, QT, Gittleman, H, Liao, P, Rouse, C, Chen, Y, Dowling, J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology, 2014;16 (Suppl 4):iv163.CrossRefGoogle ScholarPubMed
Louis, DN, International Agency for Research on Cancer, World Health Organization, Deutsches Krebsforschungszentrum Heidelberg. WHO Classification of Tumours of the Central Nervous System, 4th edn. Lyons: International Agency for Research on Cancer; 2007.Google ScholarPubMed
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008;455(7216):1061–8.Google Scholar
Killela, PJ, Pirozzi, CJ, Healy, P, Reitman, ZJ, Lipp, E, Rasheed, BA, et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget, 2014;5(6):1515–25.CrossRefGoogle ScholarPubMed
Yan, H, Parsons, DW, Jin, G, McLendon, R, Rasheed, BA, Yuan, W, et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine, 2009;360(8):765–73.CrossRefGoogle ScholarPubMed
Jones, DT, Hutter, B, Jager, N, Korshunov, A, Kool, M, Warnatz, HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013;45(8):927–32.CrossRefGoogle ScholarPubMed
Bettegowda, C, Agrawal, N, Jiao, Y, Wang, Y, Wood, LD, Rodriguez, FJ, et al. Exomic sequencing of four rare central nervous system tumor types. Oncotarget, 2013;4(4):572–83.CrossRefGoogle ScholarPubMed
Ohgaki, H, Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. Journal of Neuropathology and Experimental Neurology, 2005;64(6):479–89.CrossRefGoogle ScholarPubMed
Cairncross, JG, Ueki, K, Zlatescu, MC, Lisle, DK, Finkelstein, DM, Hammond, RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. Journal of the National Cancer Institute, 1998;90(19):1473–9.CrossRefGoogle ScholarPubMed
Bettegowda, C, Agrawal, N, Jiao, Y, Sausen, M, Wood, LD, Hruban, RH, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science, 2011;333(6048):1453–5.CrossRefGoogle ScholarPubMed
Killela, PJ, Reitman, ZJ, Jiao, Y, Bettegowda, C, Agrawal, N, Diaz, LA, Jr, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2013;110(15):6021–6.Google Scholar
Eoli, M, Bissola, L, Bruzzone, MG, Pollo, B, Maccagnano, C, De Simone, T, et al. Reclassification of oligoastrocytomas by loss of heterozygosity studies. International Journal of Cancer/Journal International du Cancer; 2006;119(1):8490.CrossRefGoogle ScholarPubMed
Ohgaki, H, Kleihues, P. Genetic pathways to primary and secondary glioblastoma. American Journal of Pathology, 2007;170(5):1445–53.CrossRefGoogle ScholarPubMed
Parsons, DW, Jones, S, Zhang, X, Lin, JC, Leary, RJ, Angenendt, P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008;321(5897):1807–12.CrossRefGoogle ScholarPubMed
Brennan, CW, Verhaak, RG, McKenna, A, Campos, B, Noushmehr, H, Salama, SR, et al. The somatic genomic landscape of glioblastoma. Cell, 2013;155(2):462–77.CrossRefGoogle ScholarPubMed
Fan, QW, Cheng, CK, Gustafson, WC, Charron, E, Zipper, P, Wong, RA, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell, 2013;24(4):438–49.CrossRefGoogle ScholarPubMed
Verhaak, RG, Hoadley, KA, Purdom, E, Wang, V, Qi, Y, Wilkerson, MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010;17(1):98110.CrossRefGoogle ScholarPubMed
Phillips, HS, Kharbanda, S, Chen, R, Forrest, WF, Soriano, RH, Wu, TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006;9(3):157–73.CrossRefGoogle ScholarPubMed
Mardis, ER, Ding, L, Dooling, DJ, Larson, DE, McLellan, MD, Chen, K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. New England Journal of Medicine, 2009;361(11):1058–66.CrossRefGoogle ScholarPubMed
Amary, MF, Damato, S, Halai, D, Eskandarpour, M, Berisha, F, Bonar, F, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nature Genetics, 2011;43(12):1262–5.CrossRefGoogle ScholarPubMed
Borger, DR, Tanabe, KK, Fan, KC, Lopez, HU, Fantin, VR, Straley, KS, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. The Oncologist, 2012;17(1):72–9.CrossRefGoogle ScholarPubMed
Yang, H, Ye, D, Guan, KL, Xiong, Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clinical Cancer Research, 2012;18(20):5562–71.CrossRefGoogle ScholarPubMed
Ward, PS, Patel, J, Wise, DR, Abdel-Wahab, O, Bennett, BD, Coller, HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 2010;17(3):225–34.CrossRefGoogle ScholarPubMed
Zhao, S, Lin, Y, Xu, W, Jiang, W, Zha, Z, Wang, P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science, 2009;324(5924):261–5.CrossRefGoogle ScholarPubMed
Dang, L, White, DW, Gross, S, Bennett, BD, Bittinger, MA, Driggers, EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009;462(7274):739–44.CrossRefGoogle ScholarPubMed
Jin, G, Reitman, ZJ, Spasojevic, I, Batinic-Haberle, I, Yang, J, Schmidt-Kittler, O, et al. 2-Hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS ONE, 2011;6(2):e16812.CrossRefGoogle Scholar
Pietrak, B, Zhao, H, Qi, H, Quinn, C, Gao, E, Boyer, JG, et al. A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of alphaHG. Biochemistry, 2011;50(21):4804–12.CrossRefGoogle ScholarPubMed
Jin, G, Reitman, ZJ, Duncan, CG, Spasojevic, I, Gooden, DM, Rasheed, BA, et al. Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas. Cancer Research, 2013;73(2):496501.CrossRefGoogle ScholarPubMed
Ward, PS, Lu, C, Cross, JR, Abdel-Wahab, O, Levine, RL, Schwartz, GK, et al. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. Journal of Biological Chemistry, 2013;288(6):3804–15.CrossRefGoogle ScholarPubMed
Losman, JA, Looper, RE, Koivunen, P, Lee, S, Schneider, RK, McMahon, C, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science, 2013;339(6127):1621–5.CrossRefGoogle ScholarPubMed
Noushmehr, H, Weisenberger, DJ, Diefes, K, Phillips, HS, Pujara, K, Berman, BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 2010;17(5):510–22.CrossRefGoogle ScholarPubMed
Turcan, S, Rohle, D, Goenka, A, Walsh, LA, Fang, F, Yilmaz, E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012;483(7390):479–83.CrossRefGoogle ScholarPubMed
Figueroa, ME, Abdel-Wahab, O, Lu, C, Ward, PS, Patel, J, Shih, A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 2010;18(6):553–67.CrossRefGoogle Scholar
Xu, W, Yang, H, Liu, Y, Yang, Y, Wang, P, Kim, SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011;19(1):1730.CrossRefGoogle ScholarPubMed
Lu, C, Ward, PS, Kapoor, GS, Rohle, D, Turcan, S, Abdel-Wahab, O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 2012;483(7390):474–8.CrossRefGoogle Scholar
Chowdhury, R, Yeoh, KK, Tian, YM, Hillringhaus, L, Bagg, EA, Rose, NR, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Reports, 2011;12(5):463–9.CrossRefGoogle ScholarPubMed
Koivunen, P, Lee, S, Duncan, CG, Lopez, G, Lu, G, Ramkissoon, S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature, 2012;483(7390):484–8.CrossRefGoogle Scholar
Watanabe, T, Nobusawa, S, Kleihues, P, Ohgaki, H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. American Journal of Pathology, 2009;174(4):1149–53.CrossRefGoogle ScholarPubMed
Sasaki, M, Knobbe, CB, Munger, JC, Lind, EF, Brenner, D, Brustle, A, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature, 2012;488(7413):656–9.CrossRefGoogle ScholarPubMed
Hegi, ME, Diserens, AC, Gorlia, T, Hamou, MF, de Tribolet, N, Weller, M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal of Medicine, 2005;352(10):9971003.CrossRefGoogle ScholarPubMed
Griffin, CA, Burger, P, Morsberger, L, Yonescu, R, Swierczynski, S, Weingart, JD, et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. Journal of Neuropathology and Experimental Neurology, 2006;65(10):988–94.CrossRefGoogle Scholar
Jiao, Y, Killela, PJ, Reitman, ZJ, Rasheed, AB, Heaphy, CM, de Wilde, RF, et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget, 2012;3(7):709–22.CrossRefGoogle ScholarPubMed
Heidenreich, B, Rachakonda, PS, Hemminki, K, Kumar, R. TERT promoter mutations in cancer development. Current Opinion in Genetics and Development, 2014;24:30–7.CrossRefGoogle ScholarPubMed
Huang, FW, Hodis, E, Xu, MJ, Kryukov, GV, Chin, L, Garraway, LA. Highly recurrent TERT promoter mutations in human melanoma. Science, 2013;339(6122):957–9.CrossRefGoogle ScholarPubMed
Horn, S, Figl, A, Rachakonda, PS, Fischer, C, Sucker, A, Gast, A, et al. TERT promoter mutations in familial and sporadic melanoma. Science, 2013;339(6122):959–61.CrossRefGoogle ScholarPubMed
Bell, RJ, Rube, HT, Kreig, A, Mancini, A, Fouse, SD, Nagarajan, RP, et al. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science, 2015;348(6238):1036–9.CrossRefGoogle ScholarPubMed
Labussiere, M, Di Stefano, AL, Gleize, V, Boisselier, B, Giry, M, Mangesius, S, et al. TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. British Journal of Cancer, 2014;111(10):2024–32.CrossRefGoogle ScholarPubMed
Castelo-Branco, P, Choufani, S, Mack, S, Gallagher, D, Zhang, C, Lipman, T, et al. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncology, 2013;14(6):534–42.CrossRefGoogle ScholarPubMed
Jiao, Y, Shi, C, Edil, BH, de Wilde, RF, Klimstra, DS, Maitra, A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science, 2011;331(6021):1199–203.CrossRefGoogle ScholarPubMed
Coons, SW, Johnson, PC, Scheithauer, BW, Yates, AJ, Pearl, DK. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer, 1997;79(7):1381–93.3.0.CO;2-W>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×