Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T03:50:32.323Z Has data issue: false hasContentIssue false

8 - Applications to Simple Reactions

Published online by Cambridge University Press:  05 August 2012

Sidney Redner
Affiliation:
Boston University
Get access

Summary

Reactions as First-Passage Processes

In this last chapter, we investigate simple particle reactions whose kinetics can be understood in terms of first-passage phenomena. These are typically diffusion-controlled reactions, in which diffusing particles are immediately converted to a product whenever a pair of them meets. The term diffusion controlled refers to the fact that the reaction itself is fast and the overall kinetics is controlled by the transport mechanism that brings reactive pairs together. Because the reaction occurs when particles first meet, first-passage processes provide a useful perspective for understanding the kinetics.

We begin by treating the trapping reaction, in which diffusing particles are permanently captured whenever they meet immobile trap particles. For a finite density of randomly distributed static traps, the asymptotic survival probability S(t) is controlled by rare, but large trap-free regions.We obtain this survival probability exactly in one dimension and by a Lifshitz tail argument in higher dimensions that focuses on these rare configurations [Lifshitz, Gredeskul, & Pastur (1988)]. At long times, we find that S(t) exp(−Atd/d+2), where A is a constant and d is the spatial dimension. This peculiar form for the survival probability was the focus of considerable theoretical effort that ultimately elucidated the role of extreme fluctuations on asymptotic behavior [see, e.g., Rosenstock (1969), Balagurov & Vaks (1974), Donsker & Varadhan (1975, 1979), Bixon & Zwanzig (1981), Grassberger & Procaccia (1982a), Kayser & Hubbard (1983), Havlin et al. (1984), and Agmon & Glasser (1986)].

We next discuss diffusion-controlled reactions in one dimension.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×