Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-28T04:28:36.205Z Has data issue: false hasContentIssue false

Chapter 33 - Hematopoietic Cell Transplants for BCR/ABL Positive Acute Lymphocytic Leukemia

from Section 10 - Hematopoietic Cell Transplants for Acute Leukemia and Myelodysplastic Syndrome

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 309 - 315
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moorman, AV, Harrison, CJ, Buck, GA, Richards, SM, Secker-Walker, LM, Martineau, M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.CrossRefGoogle Scholar
Rowley, JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.CrossRefGoogle Scholar
Hu, Y, Liu, Y, Pelletier, S, Buchdunger, E, Warmuth, M, Fabbro, D, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004;36(5):453–61.CrossRefGoogle Scholar
Larson, RA. Management of acute lymphoblastic leukemia in older patients. Semin Hematol. 2006;43(2):126–33.CrossRefGoogle ScholarPubMed
Dombret, H, Gabert, J, Boiron, JM, Rigal-Huguet, F, Blaise, D, Thomas, X, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–66.CrossRefGoogle ScholarPubMed
Forman, SJ, O’Donnell, MR, Nademanee, AP, Snyder, DS, Bierman, PJ, Schmidt, GM, et al. Bone marrow transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1987;70(2):587–8.CrossRefGoogle ScholarPubMed
Chao, NJ, Blume, KG, Forman, SJ, Snyder, DS. Long-term follow-up of allogeneic bone marrow recipients for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1995;85(11):3353–4.CrossRefGoogle ScholarPubMed
Barrett, AJ, Horowitz, MM, Ash, RC, Atkinson, K, Gale, RP, Goldman, JM, et al. Bone marrow transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1992;79(11):3067–70.CrossRefGoogle ScholarPubMed
Fielding, AK, Rowe, JM, Richards, SM, Buck, G, Moorman, AV, Durrant, IJ, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009;113(19):4489–96.CrossRefGoogle ScholarPubMed
Kebriaei, P, Saliba, R, Rondon, G, Chiattone, A, Luthra, R, Anderlini, P, et al. Long-term follow-up of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcomes. Biol Blood Marrow Transplant. 2012;18(4):584–92.CrossRefGoogle ScholarPubMed
Fielding, AK, Richards, SM, Lazarus, HM, Litzow, MR, Luger, SM, Marks, DI, et al. Does imatinib change the outcome in Philapdelphia chromosome positive acute lymphoblastic leukaemia in adults? Data from the UKALLXII/ECOG2993 Study. Blood. 2007;110(11):10a.CrossRefGoogle Scholar
Fielding, AK, Rowe, JM, Buck, G, Foroni, L, Gerrard, G, Litzow, MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.CrossRefGoogle ScholarPubMed
Mizuta, S, Matsuo, K, Maeda, T, Yujiri, T, Hatta, Y, Kimura, Y, et al. Prognostic factors influencing clinical outcome of allogeneic hematopoietic stem cell transplantation following imatinib-based therapy in BCR-ABL-positive ALL. Blood Cancer J. 2012;2(5):e72.CrossRefGoogle ScholarPubMed
O’Hare, T, Walters, DK, Stoffregen, EP, Jia, T, Manley, PW, Mestan, J, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65(11):4500–5.Google ScholarPubMed
Ottmann, O, Dombret, H, Martinelli, G, Simonsson, B, Guilhot, F, Larson, RA, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–15.Google ScholarPubMed
Lilly, MB, Ottmann, OG, Shah, NP, Larson, RA, Reiffers, JJ, Ehninger, G, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: Results from a phase 3 study. Am J Hematol. 2010;85(3):164–70.CrossRefGoogle ScholarPubMed
Rousselot, P, Coudé, MM, Huguet, F, Lafage, M, Leguay, T, Salanoubat, C, et al. Dasatinib (Sprycel®) and Low intensity chemotherapy for first-line treatment in patients with de novo Philadelphia positive ALL aged 55 and over: final results of the EWALL-Ph-01 Study. Blood. 2012;120(21):666a.CrossRefGoogle Scholar
Foa, R, Vitale, A, Vignetti, M, Meloni, G, Guarini, A, De Propris, MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8.CrossRefGoogle ScholarPubMed
Porkka, K, Koskenvesa, P, Lundan, T, Rimpilainen, J, Mustjoki, S, Smykla, R, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12.CrossRefGoogle ScholarPubMed
Takayama, N, Sato, N, O’Brien, SG, Ikeda, Y, Okamoto, S. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol. 2002;119(1):106–8.CrossRefGoogle ScholarPubMed
Pfeifer, H, Goekbuget, N, Völp, C, Hüttmann, A, Lübbert, M, Stuhlmann, R, et al. Long-term outcome of 335 adult patients receiving different schedules of imatinib and chemotherapy as front-line treatment for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2010;116:173CrossRefGoogle Scholar
Ottmann, OG, Wassmann, B, Pfeifer, H, Giagounidis, A, Stelljes, M, Duhrsen, U, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Cancer. 2007;109(10):2068–76.CrossRefGoogle ScholarPubMed
Vignetti, M, Fazi, P, Cimino, G, Martinelli, G, Di Raimondo, F, Ferrara, F, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109(9):3676–8.CrossRefGoogle ScholarPubMed
Bachanova, V, Burke, MJ, Yohe, S, Cao, Q, Sandhu, K, Singleton, TP, et al. Unrelated cord blood transplantation in adult and pediatric acute lymphoblastic leukemia: effect of minimal residual disease on relapse and survival. Biol Blood Marrow Transplant. 2012;18(6):963–8.CrossRefGoogle ScholarPubMed
Pinana, JL, Sanz, J, Picardi, A, Ferra, C, Martino, R, Barba, P, et al. Umbilical cord blood transplantation from unrelated donors in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2014;99(2):378–84.CrossRefGoogle ScholarPubMed
Tucunduva, L, Ruggeri, A, Sanz, G, Furst, S, Cornelissen, J, Linkesch, W, et al. Impact of minimal residual disease on outcomes after umbilical cord blood transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia: an analysis on behalf of Eurocord, Cord Blood Committee and the Acute Leukaemia working party of the European group for Blood and Marrow Transplantation. Br J Haematol. 2014;166(5):749–57.CrossRefGoogle Scholar
Sun, YQ, Wang, J, Jiang, Q, Xu, LP, Liu, DH, Zhang, XH, et al. Haploidentical hematopoietic SCT may be superior to conventional consolidation/maintenance chemotherapy as post-remission therapy for high-risk adult ALL. Bone Marrow Transplant. 2015;50(1):20–5.CrossRefGoogle ScholarPubMed
Bachanova, V, Marks, DI, Zhang, MJ, Wang, H, de Lima, M, Aljurf, MD, et al. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia. 2014;28(3):658–65.CrossRefGoogle ScholarPubMed
Wetzler, M, Watson, D, Stock, W, Koval, G, Mulkey, FA, Hoke, EE, et al. Autologous transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia achieves outcomes similar to allogeneic transplantation: results of CALGB Study 10001 (Alliance). Haematologica. 2014;99(1):111–5.CrossRefGoogle ScholarPubMed
Topp, MS, Gokbuget, N, Zugmaier, G, Degenhard, E, Goebeler, ME, Klinger, M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.CrossRefGoogle Scholar
Kantarjian, H, Thomas, D, Jorgensen, J, Jabbour, E, Kebriaei, P, Rytting, M, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.CrossRefGoogle ScholarPubMed
Maude, SL, Frey, N, Shaw, PA, Aplenc, R, Barrett, DM, Bunin, NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefGoogle ScholarPubMed
Mohty, M, Labopin, M, Tabrizzi, R, Theorin, N, Fauser, AA, Rambaldi, A, et al. Reduced intensity conditioning allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Haematologica. 2008;93(2):303–6.CrossRefGoogle ScholarPubMed
Bachanova, V, Verneris, MR, DeFor, T, Brunstein, CG, Weisdorf, DJ. Prolonged survival in adults with acute lymphoblastic leukemia after reduced-intensity conditioning with cord blood or sibling donor transplantation. Blood. 2009;113(13):2902–5.CrossRefGoogle ScholarPubMed
Ram, R, Storb, R, Sandmaier, BM, Maloney, DG, Woolfrey, A, Flowers, ME, et al. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica. 2011;96(8):1113–20.CrossRefGoogle ScholarPubMed
Stein, AS, Palmer, JM, O’Donnell, MR, Kogut, NM, Spielberger, RT, Slovak, ML, et al. Reduced-intensity conditioning followed by peripheral blood stem cell transplantation for adult patients with high-risk acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2009;15(11):1407–14.CrossRefGoogle ScholarPubMed
Arnold, R, Massenkeil, G, Bornhauser, M, Ehninger, G, Beelen, DW, Fauser, AA, et al. Nonmyeloablative stem cell transplantation in adults with high-risk ALL may be effective in early but not in advanced disease. Leukemia. 2002;16(12):2423–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×