Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T20:02:18.606Z Has data issue: false hasContentIssue false

Chapter 31 - Hematopoietic Cell Transplants for Children with Acute Lymphoblastic Leukemia

from Section 10 - Hematopoietic Cell Transplants for Acute Leukemia and Myelodysplastic Syndrome

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 291 - 297
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schrappe, M, Nachman, J, Hunger, S, Schmeigelow, K, Conter, V, Masera, G, et al. Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985–2000). Leukemia. 2010;24:253–4.CrossRefGoogle ScholarPubMed
Schrappe, M, Hunger, S, Pui, C-H, Saha, V, Gaynon, P, Baruchel, A, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. New Engl J Med. 2012;366:1371–81.CrossRefGoogle ScholarPubMed
Balduzzi, A, Valsecchi, M, Uderzo, C, De Lorenzo, P, Klingbiel, T, Peters, C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet. 2005;366:635–42.CrossRefGoogle Scholar
Schrauder, A, Reiter, A, Gadner, H, Niethammer, D, Klingbiel, T, Kremens, B, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol. 2006;36:5742–9.Google Scholar
van Dongen, J, Seriu, T, Panzer-Grumayer, E, Biondi, A, Pongers-Willemse, M, Corral, L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukemia. Lancet. 1998;352:1731–8.CrossRefGoogle Scholar
Cave, H, van de Werff, T, Bosch, J, Suciu, S, Guidal, C, Waterkeyn, C, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. New Engl J Med. 1998;339:591–8.CrossRefGoogle ScholarPubMed
Jacquy, C, Delepaut, B, Van Daele, S, Vaerman, J, Zenebergh, A, Brichard, B, et al. A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol. 1997;98:140–6.CrossRefGoogle Scholar
Panzer-Grumayer, E, Schneider, M, Panzer, S, Fasching, K, Gadner, H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95:790–4.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Wood, BL, Devidas, M, Loh, ML, Raetz, EA, Salzer, W, et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood. 2015;126(8):964–71.CrossRefGoogle Scholar
Nachman, J, Heerema, N, Sather, H, Camitta, B, Forestier, E, Harrison, C, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112–5.CrossRefGoogle ScholarPubMed
Schultz, K, Devidas, M, Bowman, W, Aledo, A, Slayton, W, Sather, H, et al. Philadelphia chromosome-negative very high-risk acute lymphoblastic leukemia in cihldren and adolescents: results from Children’s Oncology Group Study AALL0031. Leukemia. 2014;28:964–7.Google Scholar
Mehta, P, Eapen, M, Zhang, M-J. Transplant outcomes for children with hypodiploid acute lymphoblastic leukemia: The CIBMTR experience. Biol Blood Marrow Transplant. 2014;20:S87–S.CrossRefGoogle Scholar
Mehta, PA, Zhang, MJ, Eapen, M, He, W, Seber, A, Gibson, B, et al. Transplantation outcomes for children with hypodiploid acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2015;21(7):1273–7.CrossRefGoogle ScholarPubMed
Arico, M, Schrappe, M, Hunger, S, Carroll, WL, Conter, V, Galimberti, S, et al. Clinical outcome in children with newly diagnosed Philadephia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28(31):4755–61.CrossRefGoogle Scholar
Schultz, K, Bowman, W, Aledo, A, Slayton, W, Sather, H, Devidas, M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group Study. J Clin Oncol. 2009;31:5175–81.Google Scholar
Schultz, K, Carroll, A, Heerema, N, Bowman, W, Aledo, A, Slayton, W, et al. Long-term follow up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0031. Leukemia. 2014:15.Google Scholar
Pui, C-H, Gayson, P, Boyett, J, Chessells, J, Baruchel, A, Kamps, W, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359:1909–15.CrossRefGoogle ScholarPubMed
Pieters, R, Schrappe, M, De Lorenzo, P, Hann, I, De Rossi, G, Felice, M, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007;370:240–50.CrossRefGoogle Scholar
Dreyer, Z, Dinndorf, P, Camitta, B, Sather, H, La, M, Devidas, M, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children’s Oncology Group. J Clin Oncol. 2011;29(2):214–22.CrossRefGoogle ScholarPubMed
Koh, K, Tomizawa, D, Moriya Saito, A, Watanabe, T, Miyamura, T, Hirayama, M, et al. Early use of hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29(2):290–6.CrossRefGoogle ScholarPubMed
Moorman, A, Ensor, H, Richards, S, Chilton, L, Schwab, C, Kinsey, S, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11:429–38.CrossRefGoogle ScholarPubMed
Moorman, A, Richards, S, Robinson, H, Strefford, J, Gibson, B, Kinsey, S, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109:2327–30.CrossRefGoogle Scholar
Heerema, N, Carroll, A, Devidas, M, Loh, ML, Borowitz, MJ, Gastier-Foster, JM, et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk Children’s Oncology Group Studies: A report from the Children’s Oncology Group. J Clin Oncol. 2013;31:3397–402.CrossRefGoogle ScholarPubMed
Attarbaschi, A, Mann, G, Panzer-Grumayer, R, Rottgers, S, Steiner, M, Konig, M, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intracromosomal amplification if chromosome 21: The Austrian and German Acute Lymphoblastic Leukemia Berline-Frankfurt-Munster (ALL-BFM) Trials. J Clin Oncol. 2008;26:3046–50.CrossRefGoogle Scholar
Mullighan, C, Su, Z, Zhang, J, Radke, I, Phillips, L, Miller, C, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. NEJM. 2009;360:470–80.CrossRefGoogle ScholarPubMed
Waaders, E, van der Velden, V, van der Schoot, C, van Leeuwen, F, van Reijmersdal, S, de Haas, V, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011;25:254–8.Google Scholar
Coustan-Smith, E, Mullighan, C, Onciu, M, Behm, F, Raimondi, S, Pei, D, et al. Early T-cell precursor leukemia: a subtype of very high-risk acute lymphoblastic leukemia identified in two independent cohorts. Lancet Oncol. 2009;10(2):147–56.CrossRefGoogle Scholar
Wade, R, Goulden, N, Mitchell, C, Rowntree, C, Hough, RE, Vora, AJ, editors. Characteristics and Outcome Of Children and Young Adults With Early T-Precusor (ETP) ALL Treated On UKALL 2003. ASH Annual Meeting, 15 November 2013, New Orleans, LA.Google Scholar
Conter, V, Valsecchi, MG, Buldini, B, Parasole, R, Locatelli, F, Colombini, A, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):e80–6.CrossRefGoogle ScholarPubMed
Tallen, G, Ratei, R, Mann, G, Kaspers, G, Niggli, F, Karachunsky, A, et al. Long-Term Outcome in Children with Relapsed Acute Lymphoblastic Leukemia After Time-Point and Site-of-Relapse Stratification and Intensified Short-Course Multidrug Chemotherapy: Results of Trial ALL-REZ BFM 90. J Clin Oncol. 2010;28:2339–47.CrossRefGoogle ScholarPubMed
Eckert, C, Henze, G, Seeger, K, Hagedorn, N, Mann, G, Panzer-Grumayer, R, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children wiht relaped acute lymphoblastic leukemia in the Intermediate-Risk Group. J Clin Oncol. 2013;31(21):2736–42.CrossRefGoogle Scholar
Coustan-Smith, E, Gajjar, A, Hijaya, N, Razzouk, B, Ribeiro, R, Rivera, G, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia. 2004;18:499504.CrossRefGoogle ScholarPubMed
Barredo, J, Devidas, M, Lauer, S, Billett, A, Marymont, M, Pullen, J, et al. Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: A pediatric oncology group study. J Clin Oncol. 2006;24:3142–9.CrossRefGoogle ScholarPubMed
Eapen, M, Zhang, M-J, Devidas, M, Raetz, E, Barredo, J, Ritchey, A, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with acute lymphoblatic leukemia in a second remission after an isolated central nervous system relapse: a collaborative study of teh Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Leukemia. 2008;22:281–6.CrossRefGoogle ScholarPubMed
Gaynon, P, Qu, R, Chappell, R, Willoughby, M, Tubergen, D, Steinherz, P, et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse – the Children’s Cancer Group Experience. Cancer. 1998;82:1387–95.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
van den Berg, H, Langeveld, N, Veenhof, C, Behrendt, H. Treatment of isolated testicular recurrence of acute lymphoblastic leukemia without radiotherapy. Report from the Dutch Late Effects Study Group. Cancer. 1997;79:2257–63.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Locatelli, F, Schrappe, M, Bernardo, M, Rutella, S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120:2807–16.CrossRefGoogle Scholar
Uderzo, C, Grazia Zurlo, M, Adamoli, L, Zanesco, L, Arico, M, Calculli, G, et al. Treatment of isolated testicular relapse in childhood acute lymphoblastic leukemia: an Italian multicenter study. Associazione Italiana Ematologia ed Oncologia Pediatrica. J Clin Oncol. 1990;8:672–7.CrossRefGoogle ScholarPubMed
Thakar, M, Talano, J, Tower, R, Kelly, M, Burke, M. Indications for transplantation in childhood acute leukemia and the impact of minimal residual disease on relapse: a review. Clin Pract. 2014;11(1):7990.CrossRefGoogle Scholar
Borgmann, A, von Stackelberg, A, Hartmann, R, Ebell, W, Klingbiel, T, Peters, C, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood. 2003;101(10):3835–9.CrossRefGoogle Scholar
Einsiedel, G, von Stackelberg, A, Hartmann, R, Fengler, R, Schrappe, M, Janka-Schaub, G, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of Trial Acute Lymphoblastic Leukemia-Relapse Study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol. 2005;23(31):7942–50.CrossRefGoogle ScholarPubMed
Reismuller, B, Peters, C, Dworzak, M, Potschger, U, Urban, C, Meister, B, et al. Third relapse of acute lymphoblastic leukemia (ALL): a population-based analysis of the Austrian ALL-BFM Study Group. J Pediatr Hematol Oncol. 2013;35:e200–4.CrossRefGoogle Scholar
Eapen, M, Raetz, E, Zhang, M, Muehlenbein, C, Devidas, M, Abshire, T, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood. 2006;107:4961–7.CrossRefGoogle ScholarPubMed
Leung, W, Pui, C-H, Coustan-Smith, E, Yang, J, Pei, D, Gan, K, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120:468–72.CrossRefGoogle Scholar
Sutton, R, Shaw, PJ, Venn, NC, Law, T, Dissanayake, A, Kilo, T, et al. Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol. 2015;168(3):395404.CrossRefGoogle ScholarPubMed
Bader, P, Kreyenberg, H, Henze, G, Eckert, C, Reising, M, Willasch, A, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27:377–84.CrossRefGoogle ScholarPubMed
Paganin, M, Zecca, M, Fabbri, G, Polato, K, Biondi, A, Rizzari, C, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia. 2008;22:2193–200.CrossRefGoogle ScholarPubMed
Wayne, A, Radich, J. Pretransplant MRD: the light is yellow, not red. Blood. 2012;120:244–6.CrossRefGoogle Scholar
Gossai, N, Vernaris, M, Karras, N, Gorman, M, Patel, N, Burke, M. A clofarabine-based bridging regimen in patients with relapsed ALL and persistent minimal residual disease (MRD). Bone Marrow Transplant. 2014;49:440–2.CrossRefGoogle ScholarPubMed
Bleakley, M, Shaw, P, Nielsen, J. Allogeneic bone marrow transplantation for childhood relapsed acute lymphoblastic leukemia: comparison of outcome in patients with and without a matched family donor. Bone Marrow Transplant. 2002;30:17.CrossRefGoogle ScholarPubMed
Saarinen-Pihkala, U, Gustafsson, G, Ringden, O, Heilmann, C, Glomstein, A, Lonnerholm, G, et al. No disadvantage in outcome of using matched unrelated donors as compared with matched sibling donors for bone marrow transplantation in children with acute lymphoblastic leukemia in second remission. J Clin Oncol. 2001;15:3406–14.Google Scholar
Peters, C, Schrappe, M, von Stackelberg, A, Schrauder, A, Bader, P, Ebell, W, et al. Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors: The ALL-SCT-BFM-2003 trial. J Clin Oncol. 2015;33(11):1265–74.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×