Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-08-01T16:19:13.980Z Has data issue: false hasContentIssue false

Chapter 59 - Human Leukocyte Antigen-Haplotype Mismatch Transplants: Overcoming Major Genetic Barriers

from Section 16 - Novel Transplant Strategies

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 559 - 568
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reisner, Y, Kapoor, N, Kirkpatrick, D, et al. Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61(2):341–8.CrossRefGoogle ScholarPubMed
Friedrich, W, Hönig, M. HLA-haploidentical donor transplantation in severe combined immunodeficiency. Immunol Allergy Clin North Am. 2010;30(1):3144.CrossRefGoogle ScholarPubMed
Martelli, MF, Aversa, F, Bachar-Lustig, E, et al. Transplants across human leukocyte antigen barriers. Semin Hematol. 2002;39(1):4856.CrossRefGoogle ScholarPubMed
Bachar-Lusting, E, Rachamim, N, Li, HW, et al. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med 1995;1:1268–73.Google Scholar
Rachamin, N, Gan, J, Segall, H, Krauthgamer, R, et al. Tolerance induction by “megadose” hematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation. 1998;65:1386–93.Google Scholar
Gur, H, Krauthgamer, R, Berrebi, A, et al. Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34(+) cells. Blood. 2002;99:4174–81.CrossRefGoogle ScholarPubMed
Gur, H, Krauthgamer, R, Bachar-Lustig, E, et al. Immune regulatory activity of CD34+ progenitor cells: evidence for a deletion-based mechanism mediated by TNF-alpha. Blood. 2005;105(6):2585–93.CrossRefGoogle ScholarPubMed
Aversa, F, Tabilio, A, Terenzi, A, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55.CrossRefGoogle ScholarPubMed
Aversa, F, Tabilio, A, Velardi, A, et al. Treatment of high risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.CrossRefGoogle ScholarPubMed
Aversa, F, Terenzi, A, Tabilio, A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23(15):3447–54.CrossRefGoogle ScholarPubMed
Aversa, F, Martelli, MF, Velardi, A. Haploidentical hematopoietic stem cell transplantation with a megadose T-cell-depleted graft: harnessing natural and adaptive immunity. Semin Oncol. 2012;39(6):643–52.CrossRefGoogle ScholarPubMed
Ruggeri, L, Capanni, M, Urbani, E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:20972100.CrossRefGoogle ScholarPubMed
Ruggeri, L, Aversa, F, Martelli, MF, Velardi, A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev. 2006;214:202–18.CrossRefGoogle ScholarPubMed
Velardi, A, Ruggeri, L, Mancusi, A, Aversa, F, Christiansen, FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol. 2009;21(5):525–30.CrossRefGoogle ScholarPubMed
Ciceri, F, Labopin, M, Aversa, F, et al. Acute Leukemia Working Party (ALWP) of European Blood and Marrow Transplant (EBMT) Group. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112(9):3574–81.CrossRefGoogle Scholar
Moretta, L, Moretta, A. Killer immunoglobulin-like receptors. Curr Opin Immunol. 2004;16:626–33.CrossRefGoogle ScholarPubMed
Moretta, L, Locatelli, F, Pende, D, Marcenaro, E, Mingari, MC, Moretta, A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117(3):764–71.CrossRefGoogle ScholarPubMed
Yawata, M, Yawata, N, Draghi, M, Little, AM, Parteniou, F, Parham, P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med. 2006;203:633–45.CrossRefGoogle ScholarPubMed
Leung, W, Iyengar, R, Turner, V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–50.CrossRefGoogle ScholarPubMed
Haas, P, Loiseau, P, Tamouza, R, et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2011;117(3):1021–9.CrossRefGoogle ScholarPubMed
Perruccio, K, Tosti, A, Burchielli, E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):4397–406.CrossRefGoogle ScholarPubMed
Feuchtinger, T, Opherk, K, Bethge, WA, Topp, MS, Schuster, FR, Weissinger, EM et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):4360–7.CrossRefGoogle ScholarPubMed
Leen, AM, Christin, A, Myers, GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein–Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):4283–92.CrossRefGoogle ScholarPubMed
Comoli, P, Schilham, MW, Basso, S, et al. T-cell lines specific for peptides of adenovirus hexon protein and devoid of alloreactivity against recipient cells can be obtained from HLA-haploidentical donors. J Immunother. 2008;31(6):529–36.CrossRefGoogle ScholarPubMed
Comoli, P, Basso, S, Zecca, M, et al. Preemptive Therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant. 2007;7(6):1648–55.CrossRefGoogle ScholarPubMed
Perruccio, K, Topini, F, Tosti, A, et al. Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. Blood Cells Mol Dis. 2008; 40(1):7683.CrossRefGoogle ScholarPubMed
Mielke, S, Nunes, R, Rezvani, K, et al. A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood. 2008;111(8):4392–402.CrossRefGoogle Scholar
Roy, DC, Guerin, M, Boumedine, RS, et al. Reduction in incidence of severe infections by transplantation of high doses of haploidentical T cells selectively depleted of alloreactive units. ASH Annual Meeting Abstracts. 2011;118(21):3020.Google Scholar
Marktel, S, Magnani, Z, Ciceri, F, et al. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood. 2003;101(4):1290–8.CrossRefGoogle ScholarPubMed
Ciceri, F, Bonini, C, Gallo-Stampino, C, Bordignon, C. Modulation of GvHD by suicide-gene transduced donor T lymphocytes: clinical applications in mismatched transplantation. Cytotherapy. 2005;7(2):144–9.CrossRefGoogle ScholarPubMed
Ciceri, F, Bonini, C, Stanghellini, MTL, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 2009; 10(5):489500.CrossRefGoogle Scholar
Vago, L, Oliveira, G, Bondanza, A. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood. 2012;120(9):1820–30.CrossRefGoogle ScholarPubMed
Bader, P, Soerensen, J, Jarisch, A, et al. Rapid immune recovery and low TRM in haploidentical stem cell transplantation in children and adolescence using CD3/CD19 depleted stem cells. Best Pract Res Clin Haematol. 2011;24(3):331–7.CrossRefGoogle ScholarPubMed
Bethge, WA, Haegele, M, Faul, C, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis. 2008;40(1):13–9.CrossRefGoogle ScholarPubMed
Chaleff, S, Otto, M, Barfield, RC, et al. A large-scale method for the selective depletion of alphabeta T lymphocytes from PBSC for allogeneic transplantation. Cytotherapy. 2007;9(8):746–54.CrossRefGoogle ScholarPubMed
Handgretinger, R. New approaches to graft engineering for haploidentical bone marrow transplantation. Semin Oncol. 2012;39(6):664–73.CrossRefGoogle ScholarPubMed
Handgretinger, R, Lang, P, Feuchtinger, TF, et al. Transplantation of TcR {alpha}{beta}/CD19 depleted stem cells from haploidentical donors: robust engraftment and rapid immune reconstitution in children with high risk leukemia. ASH Annual Meeting Abstracts. 2011;118:1005.Google Scholar
Carding, SR, Egan, PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2(5):336–45.CrossRefGoogle ScholarPubMed
Locatelli, F, Bauquet, A, Palumbo, G, Moretta, F, Bertaina, A. Negative depletion of α/β+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett 2013;155(1–2):21–3.CrossRefGoogle ScholarPubMed
Bertaina, A, Merli, P, Rutella, S, et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders Blood. 2014;124(5):822–6.CrossRefGoogle Scholar
Prezioso, L, Bonomini, S, Lambertini, C, et al. Haploidentical stem cell transplantation after negative depletion of T cells expressing the αβ chain of the T-cell receptor (TCR) for adults with hematological malignancies. Blood 2013;122:4609 (Abstract).CrossRefGoogle Scholar
Aversa, F. Ex vivo TCRα/β/CD19 T and B cell depletion in HSCT for treatment of adult patients with hematological disease. Milteni Symposium on Cellular therapy: Facts, developments, future visions, EBMT meeting, Milan 2014 (Abstract).Google Scholar
Hoffmann, P, Ermann, J, Edinger, M, Fathman, CG, Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(3):389–99.CrossRefGoogle ScholarPubMed
Nguyen, VH, Shashidhar, S, Chang, DS, et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood. 2008;111(2):945–53.CrossRefGoogle ScholarPubMed
Edinger, M, Hoffmann, P, Ermann, J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9(9):1144–50.CrossRefGoogle ScholarPubMed
Di Ianni, M, Del Papa, B, Cecchini, D, et al. Immunomagnetic isolation of CD4+CD25+FoxP3+ natural T regulatory lymphocytes for clinical applications. Clin Exp Immunol. 2009;156:246–53.CrossRefGoogle ScholarPubMed
Di Ianni, M, Falzetti, F, Carotti, A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.CrossRefGoogle ScholarPubMed
Trenado, A, Charlotte, F, Fisson, S, et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2003;112(11):1688–96.CrossRefGoogle ScholarPubMed
Martelli, MF, Di Ianni, M, Ruggeri, L, et al. A. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–40.Google Scholar
Martelli, MF, Di Ianni, M, Ruggeri, L, et al. “Designed” grafts for HLA-haploidentical stem cell transplantation. Blood 2014;123(7):967–73.CrossRefGoogle ScholarPubMed
Anasetti, C, Beatty, PG, Storb, R, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29(2):7991. PubMed PMID: 2249952.CrossRefGoogle ScholarPubMed
Anasetti, C, Amos, D, Beatty, PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320(4):197204. PubMed PMID: 2643045.CrossRefGoogle ScholarPubMed
Beatty, PG, Clift, RA,. Mickelson, EM, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313(13):765771.CrossRefGoogle ScholarPubMed
Powles, RL, Morgenstern, GR, Kay, HE, et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet. 1983;1(8325):612615.CrossRefGoogle ScholarPubMed
Passweg, JR, Baldomero, H, Gratwohl, A, et al. and for the European Group for Blood and Marrow Transplantation (EBMT). The EBMT activity survey: 1990–2010. Bone Marrow Transplant. 2012;47:906–23.CrossRefGoogle ScholarPubMed
Lu, D-P, Dong, L, Wu, T, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107(8):3065–73.CrossRefGoogle ScholarPubMed
Ji, S-Q, Chen, H-R, Yan, H-M, et al. Anti-CD25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for hematological malignancies. Bone Marrow Transplant. 2005;36(4):349–54.CrossRefGoogle ScholarPubMed
Di Bartolomeo, P, Santarone, S, De Angelis, G, et al. Unmanipulated bone marrow transplantation from haploidentical related donors for patients with high risk hematologic malignancies. Blood 2010;116:Abstract 2350.CrossRefGoogle Scholar
Sanz, J, Boluda, JCH, Martín, C, et al. Single-unit umbilical cord blood transplantation from unrelated donors in patients with hematological malignancy using busulfan, thiotepa, fludarabine and ATG as myeloablative conditioning regimen. Bone Marrow Transplantation. 2012;47(10):1287–93.CrossRefGoogle ScholarPubMed
Noviello, M, Forcina, A, Lupo-Stanghellini, MT, et al. Early reconstitution of T-cell immunity to CMV after HLA-haploidentical hematopoietic stem cell transplantation is a strong surrogate biomarker for lower non-relapse mortality rates. ASH Annual Meeting Abstracts 2012;120:4191Google Scholar
Santos, GW, Owens, AH. Production of graft-versus-host disease in the rat and its treatment with cytotoxic agents. Nature. 1966;210(5032):139–40.CrossRefGoogle ScholarPubMed
Luznik, L, O’Donnell, PV, Symons, HJ, et al. HLA-haploidentical bone marrow ransplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50.CrossRefGoogle Scholar
McCurdy, SR, Kanakry, JA, Showel, MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125(19):3024–31.CrossRefGoogle ScholarPubMed
Raiola, AM, Dominietto, A, Ghiso, A, et al. Unmanipulated haploidentical bone marrow transplant and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19;117–22.CrossRefGoogle ScholarPubMed
Castagna, L, Crocchiolo, R, Furst, S, et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2014;20:724–9.CrossRefGoogle ScholarPubMed
Solomon, S, Sizemore, C, Zhang, Z, et al. TBI-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Blood. 2014;124:426(Abstract).CrossRefGoogle Scholar
Grosso, D, Gaballa, S, Alpdogan, O, et al. A two-step approach to myeloablative haploidentical transplantation: low nonrelapse mortality and high survival confirmed in patients with earlier stage disease. Biol Blood Marrrow Transplant. 2015;21(4):646–52.CrossRefGoogle ScholarPubMed
Halter, J, Kodera, Y, Urbano-Ispizua, A, et al. for the European Group for Blood and Marrow Transplantation (EBMT) Activity Survey Office. Severe events in donors after allogeneic hematopoietic stem cell donation. Haematologica. 2009;94:94101.CrossRefGoogle ScholarPubMed
Kanakry, CG, Tsai, HL, Bolan˜os-Meade, J, et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood. 2014;124:3817–27.CrossRefGoogle ScholarPubMed
Bradstock, KF, Bilmon, I, Kwan, J, et al. Single-agent high-dose cyclophosphamide for graft-versus-host disease prophylaxis in human leukocyte antigen matched reduced-intensity peripheral blood stem cell transplantation results in an unacceptably high rate of severe acute graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:934–53.CrossRefGoogle Scholar
Kanakry, CG, O’Donnell, PV, Furlong, T, et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol. 2014;32(31):3497–505.CrossRefGoogle ScholarPubMed
Holtick, U, Chemnitz, JM, Shimabukuro-Vornhagen, A, et al. OCTET-CY: a phase II study to investigate the efficacy of post-transplant cyclophosphamide as sole graft-versus-host prophylaxis after allogeneic peripheral blood stem cell transplantation. Eur J Haematol. 2016;96(1):2735.CrossRefGoogle ScholarPubMed
Bashey, A, Zhang, X, Sizemore, CA., et al. T-cell–replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–16.CrossRefGoogle ScholarPubMed
Raiola, AM, Dominietto, A, di Grazia, C, et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant. 2014;20:1573–9.CrossRefGoogle ScholarPubMed
Ciurea, SO, Zhang, MJ, Bacigalupo, AA, et al. Haploidentical transplant with post-transplant cyclophosphamide versus matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40.CrossRefGoogle Scholar
Kekre, N, Antin, J. Hemopoietic stem cell transplant sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood. 2014;124:334–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×