Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-08T13:51:02.537Z Has data issue: false hasContentIssue false

18 - Partial differential equations: general and particular solutions

Published online by Cambridge University Press:  05 June 2012

K. F. Riley
Affiliation:
University of Cambridge
M. P. Hobson
Affiliation:
University of Cambridge
Get access

Summary

In this chapter and the next the solution of differential equations of types typically encountered in the physical sciences and engineering is extended to situations involving more than one independent variable. A partial differential equation (PDE) is an equation relating an unknown function (the dependent variable) of two or more variables to its partial derivatives with respect to those variables. The most commonly occurring independent variables are those describing position and time, and so we will couch our discussion and examples in notation appropriate to them.

As in other chapters we will focus our attention on the equations that arise most often in physical situations. We will restrict our discussion, therefore, to linear PDEs, i.e. those of first degree in the dependent variable. Furthermore, we will discuss primarily second-order equations. The solution of first-order PDEs will necessarily be involved in treating these, and some of the methods discussed can be extended without difficulty to third- and higher-order equations. We shall also see that many ideas developed for ordinary differential equations (ODEs) can be carried over directly into the study of PDEs.

In this chapter we will concentrate on general solutions of PDEs in terms of arbitrary functions and the particular solutions that may be derived from them in the presence of boundary conditions. We also discuss the existence and uniqueness of the solutions to PDEs under given boundary conditions.

In the next chapter the methods most commonly used in practice for obtaining solutions to PDEs subject to given boundary conditions will be considered.

Type
Chapter
Information
Mathematical Methods for Physics and Engineering
A Comprehensive Guide
, pp. 608 - 645
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×