Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T06:12:55.052Z Has data issue: false hasContentIssue false

7 - Vector algebra

Published online by Cambridge University Press:  05 June 2012

K. F. Riley
Affiliation:
University of Cambridge
M. P. Hobson
Affiliation:
University of Cambridge
Get access

Summary

This chapter introduces space vectors and their manipulation. Firstly we deal with the description and algebra of vectors, then we consider how vectors may be used to describe lines and planes and finally we look at the practical use of vectors in finding distances. Much use of vectors will be made in subsequent chapters; this chapter gives only some basic rules.

Scalars and vectors

The simplest kind of physical quantity is one that can be completely specified by its magnitude, a single number, together with the units in which it is measured. Such a quantity is called a scalar and examples include temperature, time and density.

A vector is a quantity that requires both a magnitude (≥ 0) and a direction in space to specify it completely; we may think of it as an arrow in space. A familiar example is force, which has a magnitude (strength) measured in newtons and a direction of application. The large number of vectors that are used to describe the physical world include velocity, displacement, momentum and electric field. Vectors are also used to describe quantities such as angular momentum and surface elements (a surface element has an area and a direction defined by the normal to its tangent plane); in such cases their definitions may seem somewhat arbitrary (though in fact they are standard) and not as physically intuitive as for vectors such as force. A vector is denoted by bold type, the convention of this book, or by underlining, the latter being much used in handwritten work.

Type
Chapter
Information
Mathematical Methods for Physics and Engineering
A Comprehensive Guide
, pp. 216 - 245
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Vector algebra
  • K. F. Riley, University of Cambridge, M. P. Hobson, University of Cambridge, S. J. Bence
  • Book: Mathematical Methods for Physics and Engineering
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164979.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Vector algebra
  • K. F. Riley, University of Cambridge, M. P. Hobson, University of Cambridge, S. J. Bence
  • Book: Mathematical Methods for Physics and Engineering
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164979.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Vector algebra
  • K. F. Riley, University of Cambridge, M. P. Hobson, University of Cambridge, S. J. Bence
  • Book: Mathematical Methods for Physics and Engineering
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139164979.009
Available formats
×