Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T11:49:01.394Z Has data issue: false hasContentIssue false

10 - Fault populations

Published online by Cambridge University Press:  30 March 2010

Richard A. Schultz
Affiliation:
Geomechanics – Rock Fracture Group, Department of Geological Sciences and Engineering, University of Nevada, Reno
Roger Soliva
Affiliation:
Université Montpellier II, Département des Sciences de la Terre et de l'Environnement, France
Chris H. Okubo
Affiliation:
U.S. Geological Survey, Flagstaff
Daniel Mège
Affiliation:
Laboratoire de Planetologie et Geodynamique, UFR des Sciences et Techniques Université de Nantes, France
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

Faults have been identified beyond the Earth on many other planets, satellites, and asteroids in the solar system, with normal and thrust faults being most common. Faults on these bodies exhibit the same attributes of fault geometry, displacement–length scaling, interaction and linkage, topography, and strain accommodation as terrestrial faults, indicating common processes despite differences in environmental conditions, such as planetary gravity, surface temperature, and tectonic driving mechanism. Widespread extensional strain on planetary bodies is manifested as arrays and populations of normal faults and grabens having soft-linked and hard-linked segments and relay structures that are virtually indistinguishable from their Earth-based counterparts. Strike-slip faults on Mars and Europa exhibit classic and diagnostic elements such as rhombohedral push-up ranges in their echelon stepovers and contractional and extensional structures located in their near-tip quadrants. Planetary thrust faults associated with regional contractional strains occur as surface-breaking structures, known as lobate scarps, or as blind faults beneath an anticlinal fold at the surface, known as a wrinkle ridge. Analysis of faults and fault populations can reveal insight into the evolution of planetary surfaces that cannot be gained from other techniques. For example, measurements of fault-plane dip angles provide information on the frictional strength of the faulted lithosphere. The depth of faulting, and potentially, paleogeothermal gradients and seismic moments, can be obtained by analysis of the topographic changes associated with faulting.

Type
Chapter
Information
Planetary Tectonics , pp. 457 - 510
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, R. W. and Ekström, G. (2001). Earthquake slip on oceanic transform faults. Nature, 410, 74–76.CrossRefGoogle ScholarPubMed
Ackermann, R. V., Schlische, R. W., and Withjack, M. O. (2001). The geometric and statistical evolution of normal fault systems: An experimental study of the effects of mechanical layer thickness on scaling laws. J. Struct. Geol., 23, 1803–1819.CrossRefGoogle Scholar
Aki, K. and Richards, P. G. (1980). Quantitative Seismology: Theory and Methods. Vol. I. San Francisco: W. H. Freeman.Google Scholar
Albertz, J., Dorninger, P., Dorrer, E., Ebner, H., Gehrke, S., Giese, B., Gwinner, K., Heipke, C., Howington-Kraus, E., Kirk, R. L., Lehmann, H., Mayer, H., Muller, J.-P., Oberst, J., Ostrovskiy, A., Renter, J., Reznik, S., Schmidt, R., Scholten, F., Spiegel, M., Stilla, U., Wählisch, M., Neukum, G., Attwenger, M., Barrett, J., and Casley, S. (2005). HRSC on Mars Express: Photogrammetric and cartographic research. Photogramm. Eng. Remote Sens., 71, 1153–1166.CrossRefGoogle Scholar
Anderson, E. M. (1951). The Dynamics of Faulting and Dyke Formation, with Applications to Britain. Edinburgh, Oliver & Boyd.Google Scholar
Andrews-Hanna, J. C., Zuber, M. T., and HauckII, S. A. (2008). Strike-slip faults on Mars: Observations and implications for global tectonics and geodynamics. J. Geophys. Res., 113, E08002, doi:10.1029/2007JE002980.CrossRefGoogle Scholar
Angelier, J. (1994). Fault slip analysis and paleostress reconstruction. In Continental Deformation, ed. Hancock, P. L.. New York, Pergamon, pp. 53–100.Google Scholar
Aydin, A. (1988). Discontinuities along thrust faults and the cleavage duplexes. In Geometries and Mechanisms of Thrusting, with Special Reference to the Appalachians, ed. Mitra, G. and Wojtal, S.. Geol. Soc. Am. Spec. Pap., 222, 223–232.
Aydin, A. (2006). Failure modes of the lineaments on Jupiter's moon, Europa: Implications for the origin of its icy crust. J. Struct. Geol., 28, 2222–2236.CrossRefGoogle Scholar
Aydin, A. and DeGraff, J. M. (1988). Evolution of polygonal fracture patterns in lava flows. Science, 239, 471–476.CrossRefGoogle ScholarPubMed
Aydin, A. and Nur, A. (1982). Evolution of pull-apart basins and their scale independence. Tectonics, 1, 11–21.CrossRefGoogle Scholar
Aydin, A. and Reches, Z. (1982). Number and orientation of fault sets in the field and in experiments. Geology, 10, 107–112.2.0.CO;2>CrossRefGoogle Scholar
Aydin, A. and Schultz, R. A. (1990). Effect of mechanical interaction on the development of strike-slip faults with echelon patterns. J. Struct. Geol., 12, 123–129.CrossRefGoogle Scholar
Aydin, A., Schultz, R. A., and Campagna, D. (1990). Fault-normal dilation in pull-apart basins: Implications for the relationship between strike-slip faults and volcanic activity. Ann. Tectoni., 4, 45–52.Google Scholar
Aydin, A., Borja, R. I., and Eichhubl, P. (2006). Geological and mathematical framework for failure modes in granular rock. J. Struct. Geol., 28, 83–98.CrossRefGoogle Scholar
Bai, T. and Pollard, D. D. (2000). Fracture spacing in layered rocks: A new explanation based on the stress transition. J. Struct. Geol., 22, 43–57.CrossRefGoogle Scholar
Banerdt, W. B., Golombek, M. P., and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson AZ: University of Arizona Press, pp. 249–297.Google Scholar
Barnett, J. A. M., Mortimer, J., Rippon, J. H., Walsh, J. J., and Watterson, J. (1987). Displacement geometry in the volume containing a single normal fault. Am. Assoc. Petrol. Geol. Bull., 71, 925–937.Google Scholar
Bellahsen, N., Daniel, J.-M., Bollinger, L., and Burov, E. (2003). Influence of viscous layers on growth of normal faults: Insights from experimental and numerical models. J. Struct. Geol., 25, 1471–1485.CrossRefGoogle Scholar
Benedicto, A., Schultz, R., and Soliva, R. (2003). Layer thickness and the shape of faults. Geophys. Res. Lett., 30, 2076, 10.1029/2003GL018237.CrossRefGoogle Scholar
Ben-Zion, Y. (2001). On quantification of the earthquake source. Seismol. Res. Lett., 72, 151–152.CrossRefGoogle Scholar
Bieniawski, Z. T. (1989). Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering. New York, Wiley.Google Scholar
Bohnenstiehl, D. R. and Carbotte, S. M. (2001). Faulting patterns near 19°30′S on the East Pacific Rise: Fault formation and growth at a superfast spreading center. Geochem., Geophys., Geosyst., 2, 2001GC000156.CrossRefGoogle Scholar
Bohnenstiehl, D. R. and Kleinrock, M. C. (1999). Faulting and fault scaling on the median valley floor of the Trans-Atlantic Geotraverse (TAG) segment, 26°N on the Mid-Atlantic Ridge. J. Geophys. Res., 104, 29 351–29 364.CrossRefGoogle Scholar
Borgos, H. G., Cowie, P. A., and Dawers, N. H. (2000). Practicalities of extrapolating one-dimensional fault and fracture size-frequency distributions to higher-dimensional samples. J. Geophys. Res., 105, 28 377–28 391.CrossRefGoogle Scholar
Brace, W. F. and Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 6248–6252.CrossRefGoogle Scholar
Brady, B. H. G. and Brown, E. T. (1993). Rock Mechanics for Underground Mining. London, Chapman and Hall.Google Scholar
Brown, E. T. and Hoek, E. (1978). Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abs., 15, 211–215.CrossRefGoogle Scholar
Bürgmann, R., Pollard, D. D., and Martel, S. J. (1994). Slip distributions on faults: Effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol., 16, 1675–1690.CrossRefGoogle Scholar
Caine, J. S., Evans, J. P., and Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24, 1025–1028.2.3.CO;2>CrossRefGoogle Scholar
Carbotte, S. M. and Macdonald, K. C. (1994). Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns. J. Geophys. Res., 99, 13 609–13 631.CrossRefGoogle Scholar
Chinnery, M. A. (1961). The deformation of the ground around surface faults. Seismol. Soc. Am. Bull., 51, 355–372.Google Scholar
Cladouhos, T. T. and Marrett, R. (1996). Are fault growth and linkage models consistent with power-law distributions of fault lengths?J. Struct. Geol., 16, 281–293.CrossRefGoogle Scholar
Clark, R. M. and Cox, S. J. D. (1996). A modern regression approach to determining fault displacement–length relationships. J. Struct. Geol., 18, 147–152.CrossRefGoogle Scholar
Cohen, S. C. (1999). Numerical models of crustal deformation in seismic fault zones. Adv. Geophys., 41, 133–231.CrossRefGoogle Scholar
Cooke, M. L. (1997). Fracture localization along faults with spatially varying friction. J. Geophys. Res., 102, 22 425–22 434.CrossRefGoogle Scholar
Cowie, P. A. (1998). Normal fault growth in three dimensions in continental and oceanic crust. In Faulting and Magmatism at Mid-Ocean Ridges, ed. Buck, R., Delaney, P., Karson, J. and Lagabrielle, Y.. AGU Monograph 106, pp. 325–348.CrossRef
Cowie, P. A. and Roberts, G. P. (2001). Constraining slip rates and spacing for active normal faults. J. Struct. Geol., 23, 1901–1915.CrossRefGoogle Scholar
Cowie, P. A. and Scholz, C. H. (1992a). Displacement–length scaling relationships for faults: Data synthesis and discussion. J. Struct. Geol., 14, 1149–1156.CrossRefGoogle Scholar
Cowie, P. A. and Scholz, C. H. (1992b). Physical explanation for the displacement–length relationship of faults using a post-yield fracture mechanics model. J. Struct. Geol., 14, 1133–1148.CrossRefGoogle Scholar
Cowie, P. A., Malinverno, A., Ryan, W. B. F., and Edwards, M. H. (1994). Quantitative fault studies on the East Pacific Rise: A comparison of sonar imaging techniques. J. Geophys. Res., 99, 15 205–15 218.CrossRefGoogle Scholar
Cowie, P. A., Sornette, D., and Vanneste, C. (1995). Multifractal scaling properties of a growing fault population. Geophys. J. Inter., 122, 457–469.CrossRefGoogle Scholar
Cowie, P. A., Knipe, R. J., and Main, I. G. (1996). Introduction to the Special Issue. J. Struct. Geol., 28 (2/3), v–xi.CrossRefGoogle Scholar
Crider, J. G. and Peacock, D. C. P. (2004). Initiation of brittle faults in the upper crust: A review of field observations. J. Struct. Geol., 26, 691–707.CrossRefGoogle Scholar
Crider, J. G. and Pollard, D. D. (1998). Fault linkage: Three-dimensional mechanical interaction between echelon normal faults. J. Geophys. Res., 103, 24 373–24 391.CrossRefGoogle Scholar
Davis, K., Burbank, D. W., Fisher, D., Wallace, S., and Nobes, D. (2005). Thrust-fault growth and segment linkage in the active Ostler fault zone, New Zealand. J. Struct. Geol., 27, 1528–1546.CrossRefGoogle Scholar
Davison, I. (1994). Linked fault systems: Extensional, strike-slip and contractional. In Continental Deformation, ed. Hancock, P. L.. New York, Pergamon, pp. 121–142.Google Scholar
Dawers, N. H. and Anders, M. H. (1995). Displacement–length scaling and fault linkage. J. Struct. Geol., 17, 607–614.CrossRefGoogle Scholar
Dawers, N. H., Anders, M. H., and Scholz, C. H. (1993). Growth of normal faults: Displacement–length scaling. Geology, 21, 1107–1110.2.3.CO;2>CrossRefGoogle Scholar
Delaney, P. T., Pollard, D. D., Ziony, J. I., and McKee, E. H. (1986). Field relations between dikes and joints: Emplacement processes and paleostress analysis. J. Geophys. Res., 91, 4920–4938.CrossRefGoogle Scholar
dePolo, C. M. (1998). A reconnaissance technique for estimating the slip rates of normal-slip faults in the Great Basin, and application to faults in Nevada, USA. Ph.D. thesis, University of Nevada, Reno.
Dimitrova, L. L., Holt, W. E., Haines, A. J., and Schultz, R. A. (2006). Towards understanding the history and mechanisms of Martian faulting: The contribution of gravitational potential energy. Geophys. Res. Lett., 33, L08202, 10.1029/2005GL025307.CrossRefGoogle Scholar
Elliott, D. (1976). The energy balance and deformation mechanism of thrust sheets. Philos. Trans. R. Soc. Lond., A283, 289–312.CrossRefGoogle Scholar
Engelder, T. (1993). Stress Regimes in the Lithosphere. Princeton, NJ, Princeton University Press.Google Scholar
Ernst, R. E., Grosfils, E. B., and Mège, D. (2001). Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci., 29, 489–534.CrossRefGoogle Scholar
Ferrill, D. A. and Morris, A. P. (2003). Dilational normal faults. J. Struct. Geol., 25, 183–196.CrossRefGoogle Scholar
Fossen, H. and Gabrielsen, R. H. (2005). Strukturgeologi. Bergen, Norway, Fagbokforlaget.Google Scholar
Fossen, H., Schultz, R. A., Shipton, Z. K., and Mair, K. (2007). Deformation bands in sandstone: A review. J. Geol. Soc. Lond., 164, 755–769.CrossRefGoogle Scholar
Franklin, J. A. (1993). Empirical design and rock mass characterization. In Comprehensive Rock Engineering, ed. Hudson, J. A.. Vol. 2, ed. Fairhurst, C.. New York. Pergamon Press, pp. 795–806.Google Scholar
Freed, A. M., Melosh, H. J., and Solomon, S. C. (2001). Tectonics of mascon loading: Resolution of the strike-slip faulting paradox. J. Geophys. Res., 106, 20 603–20 620.CrossRefGoogle Scholar
Gawthorpe, R. L. and Hurst, J. M. (1993). Transfer zone in extensional basins: Their structural style and influence on drainage development and stratigraphy. J. Geol. Soc. Lond., 150, 1137–1152.CrossRefGoogle Scholar
Garel, E., Dautiel, O., and Lagabrielle, Y. (2002). Deformation processes at fast to ultra-fast oceanic spreading axes: Mechanical approach. Tectonophy., 346, 223–246.CrossRefGoogle Scholar
Goetze, C. and Evans, B. (1979). Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc., 59, 463–478.CrossRefGoogle Scholar
Golombek, M. P., Tanaka, K. L., and Franklin, B. J. (1996). Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters. J. Geophys. Res., 99, 23 163–23 171.Google Scholar
Goudy, C. L. and Schultz, R. A. (2005). Dike intrusions beneath grabens south of Arsia Mons, Mars. Geophys. Res. Lett., 32, 5, 10.1029/2004GL021977.CrossRefGoogle Scholar
Goudy, C. L., Schultz, R. A., and Gregg, T. K. P. (2005). Coulomb stress changes in Hesperia Planum, Mars, reveal regional thrust fault reactivation. J. Geophys. Res., 110, E10005, 10.1029/2004JE002293.CrossRefGoogle Scholar
Grosfils, E. and Head, J. W. (1994). Emplacement of a radiating dike swarm in western Vinmara Planitia, Venus: Interpretation of the regional stress field orientation and subsurface magmatic configuration. Earth, Moon and Planets, 66, 153–171.CrossRefGoogle Scholar
Grott, M. and Breuer, D. (2008). The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology. Icarus, 193, 503–515.CrossRefGoogle Scholar
Grott, M., Hauber, E., Werner, S. C., Kronberg, P., and Neukum, G. (2006). Mechanical modeling of thrust faults in the Thaumasia region, Mars, and implications for the Noachian heat flux. Icarus, 186, 517–526.CrossRefGoogle Scholar
Gudmundsson, A. (1992). Formation and growth of normal faults at the divergent plate boundary in Iceland. Terra Nova, 4, 464–471.CrossRefGoogle Scholar
Gudmundsson, A. (2004). Effects of Young's modulus on fault displacement. Comptes Rendus Geosci., 336, 85–92.CrossRefGoogle Scholar
Gudmundsson, A. and Bäckström, K. (1991). Structure and development of the Sveeinagja graben, Northeast Iceland. Tectonophys., 200, 111–125.CrossRefGoogle Scholar
Gupta, A. and Scholz, C. H. (2000a). A model of normal fault interaction based on observations and theory. J. Struct. Geol., 22, 865–879.CrossRefGoogle Scholar
Gupta, A. and Scholz, C. H. (2000b). Brittle strain regime transition in the Afar depression: Implications for fault growth and seafloor spreading. Geology, 28, 1078–1090.2.0.CO;2>CrossRefGoogle Scholar
Hanna, J. C. and Phillips, R. J. (2006). Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars. J. Geophys. Res., 111, E03003, doi: 10.1029/2005JE002546.CrossRefGoogle Scholar
Harris, R. A. (1998). Introduction to special section: Stress triggers, stress shadows, and implications. J. Geophys. Res., 103, 24 347–24 358.CrossRefGoogle Scholar
Hatheway, A. W. and Kiersch, G. A. (1989). Engineering properties of rock. In Practical Handbook of Physical Properties of Rocks and Minerals, ed. Carmichael, R. S., Boca Raton, Fl: CRC Press, pp. 672–715.Google Scholar
Hauber, E. and Kronberg, P. (2005). The large Thaumasia graben on Mars: Is it a rift?J. Geophys. Res., 110, E07003, 10.1029/2005JE002407.CrossRefGoogle Scholar
Hoek, E. (1983). Strength of jointed rock masses. Géotechnique, 33, 187–223.CrossRefGoogle Scholar
Hoek, E. (1990). Estimating Mohr-Coulomb friction and cohesion from the Hoek-Brown failure criterion (abs.). Int. J. Rock Mech. Min. Sci. Geomech. Abs., 27, 227–229.CrossRefGoogle Scholar
Hoek, E. and Brown, E. T. (1980). Empirical strength criterion for rock masses. J. Geotech. Eng. Div. Am. Soc. Civ. Eng., 106, 1013–1035.Google Scholar
Hoek, E. and Brown, E. T. (1997). Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci., 34, 1165–1186.CrossRefGoogle Scholar
Hooper, D. M., Bursik, M. I., and Webb, F. H. (2003). Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada, California, USA. Remote Sens. Environ., 84, 255–267.CrossRefGoogle Scholar
Hu, M. S. and Evans, A. G. (1989). The cracking and decohesion of thin films on ductile substrate. Acta Mater., 37, 917–925.CrossRefGoogle Scholar
Hubbert, M. K. and Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull., 70, 115–166.CrossRefGoogle Scholar
Jaeger, J. C. and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics. 3rd edn. New York, Chapman and Hall.Google Scholar
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. W. (2007). Fundamentals of Rock Mechanics. 4th edn. Oxford, Blackwell.Google Scholar
Jaumann, R., Reiss, D., Frei, S., Neukum, G., Scholten, F., Gwinner, K., Roatsch, T., Matz, K.-D., Mertens, V., Hauber, E., Hoffmann, H., Köhler, U., Head, J. W., Hiesinger, H., and Carr, M. H. (2005). Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera. Geophys. Res. Lett., 32, L16203, 10.1029/2005GL023415.CrossRefGoogle Scholar
Kakimi, T. (1980). Magnitude-frequency relation for displacement of minor faults and its significance in crustal deformation. Bull. Geol. Surv. Jap., 31, 467–487.Google Scholar
Kattenhorn, S. A. and Marshall, S. T. (2006). Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: Implications for fault mechanics. J. Struct. Geol., 28, 2204–2221.CrossRefGoogle Scholar
Kattenhorn, S. A. and Pollard, D. D. (1999). Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?J. Geophys. Res., 104, 28 879–28 898.CrossRefGoogle Scholar
Kattenhorn, S. A. and Pollard, D. D. (2001). Integrating 3D seismic data, field analogs and mechanical models in the analysis of segmented normal faults in the Wytch Farm oil field, southern England. Am. Assoc. Petrol. Geol. Bull., 85, 1183–1210.Google Scholar
Kiefer, W. S. and Swafford, L. C. (2006). Topographic analysis of Devana Chasma, Venus: Implications for rift system segmentation and propagation. J. Struct. Geol., 28, 2144–2155.CrossRefGoogle Scholar
King, G. C. P. (1978). Geological faulting: Fracture, creep and strain. Philos. Trans. R. Soc. Lond., A288, 197–212.CrossRefGoogle Scholar
King, G. and Yielding, G. (1984). The evolution of a thrust fault system: Processes of rupture initiation, propagation and termination in the 1980 El Asnam (Algeria) earthquake. Geophys. J. R. Astron. Soc., 77, 915–933.CrossRefGoogle Scholar
King, G. C. P., Stein, R. S., and Lin, J. (1994). Static stress changes and the triggering of earthquakes. Seismol. Soc. Am. Bull., 84, 935–953.Google Scholar
Kirk, R. L., Howington-Kraus, E., Redding, B., Galuszka, D., Hare, T. M., Archinal, B. A., Soderblom, L. A., and Barrett, J. M. (2003). High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J. Geophy. Res., 108, 8088, 10.1029/2003JE002131.CrossRefGoogle Scholar
Kirk, R. L., Howington-Kraus, E., Rosiek, M. R., Cook, D., Anderson, J., Becker, K., Archinal, , , B. A., Keszthelyi, , , L., King, , , R., McEwen, A. S., and the HiRISE Team (2007). Ultrahigh resolution topographic mapping of Mars with HiRISE stereo images: Methods and first results (abs.). Seventh International Conference on Mars, 3381.Google Scholar
Knapmeyer, M., Oberst, J., Hauber, E., Wählisch, M., Deuchler, C., and Wagner, R. (2006). Working models for spatial distribution and level of Mars' seismicity. J. Geophys. Res., 111, E11006, 10.1029/2006JE002708.CrossRefGoogle Scholar
Koenig, E. and Aydin, A. (1998). Evidence for large-scale strike-slip faulting on Venus. Geology, 26, 551–554.2.3.CO;2>CrossRefGoogle Scholar
Koenig, E. and Pollard, D. D. (1998). Mapping and modeling of radial fracture patterns on Venus. J. Geophys. Res., 103, 15 183–15 202.CrossRefGoogle Scholar
Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995). Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res., 100, 17 587–17 602.CrossRefGoogle Scholar
Kostrov, B. (1974). Seismic moment and energy of earthquakes, and seismic flow of rock. Izvestiya, Phys. Solid Earth, 13, 13–21.Google Scholar
Krantz, R. W. (1988). Multiple fault sets and three-dimensional strain: Theory and application. J. Struct. Geol., 10, 225–237.CrossRefGoogle Scholar
Krantz, R. W. (1989). Orthorhombic fault patterns: The odd axis model and slip vector orientations. Tectonics, 8, 483–495.CrossRefGoogle Scholar
Kronberg, P., Hauber, E., Grott, M., Werner, S. C., Schäfer, T., Gwinner, K., Giese, B., Masson, P., and Neukum, G. (2007). Acheron Fossae, Mars: Tectonic rifting, volcanism, and implications for lithospheric thickness. J. Geophys. Res., 112, E04005, 10.1029/2006JE002780.CrossRefGoogle Scholar
Lucchitta, B. K. (1976). Mare ridges and related highland scarps: Results of vertical tectonism?Proc. Lunar Sci. Conf. 7, 2761–2782.Google Scholar
Ma, X. Q. and Kusznir, N. J. (2003). Modelling of near-field subsurface displacements for generalized faults and fault arrays. J. Struct. Geol., 15, 1471–1484.CrossRefGoogle Scholar
Mangold, N., Allemand, P., and Thomas, P. G. (1998). Wrinkle ridges of Mars: Structural analysis and evidence for shallow deformation controlled by ice-rich décollements. Planet. Space Sci., 46, 345–356.CrossRefGoogle Scholar
Manighetti, I., King, G. C. P., Gaudemer, Y., Scholz, C. H., and Doubre, C. (2001). Slip accumulation and lateral propagation of active normal faults in Afar. J. Geophys. Res., 106, 13 667–13 696.CrossRefGoogle Scholar
Manighetti, I., Campillo, M., Sammis, C., Mai, P. M., and King, G. (2005). Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. J. Geophys. Res., 110, B05302, doi:10.1029/2004JB003174.CrossRefGoogle Scholar
Mansfield, C. S. and Cartwright, J. A. (1996). High resolution fault displacement mapping from three-dimensional seismic data: Evidence for dip linkage during fault growth. J. Struct. Geol., 18, 249–263.CrossRefGoogle Scholar
Marone, C. (1998). Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci., 26, 643–696.CrossRefGoogle Scholar
Marone, C. and Scholz, C. H. (1988). The depth of seismic faulting and the transition from stable to instable slip regimes. Geophys. Res. Lett., 15, 621–624.CrossRefGoogle Scholar
Marrett, R. and Allmendinger, R. W. (1990). Kinematic analysis of fault slip data. J. Struct. Geol., 12, 973–986.CrossRefGoogle Scholar
Marrett, R. and Allmendinger, R. W. (1991). Estimates of strain due to brittle faulting: Sampling of fault populations. J. Struct. Geol., 13, 735–738.CrossRefGoogle Scholar
Marrett, R., Orteg, O. J., and Kelsey, J. M. (1999). Extent of power-law scaling for natural fractures in rocks. Geology, 27, 799–802.2.3.CO;2>CrossRefGoogle Scholar
Martel, S. J. (1997). Effects of cohesive zones on small faults and implications for secondary fracturing and fault trace geometry. J. Struct. Geol., 19, 835–847.CrossRefGoogle Scholar
Martel, S. J. and Boger, W. A. (1998). Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock. J. Geophys. Res., 103, 21 299–21 314.CrossRefGoogle Scholar
Mastin, L. G. and Pollard, D. D. (1988). Surface deformation and shallow dike intrusion processes at Inyo Craters, Long Valley, California. J. Geophys. Res., 93, 13 221–13 235.CrossRefGoogle Scholar
McGarr, A. and Gay, N. C. (1978). State of stress in the Earth's crust. Ann. Rev. Earth Planet. Sci., 6, 405–436.CrossRefGoogle Scholar
McGill, G. E. (1993). Wrinkle ridges, stress domains, and kinematics of Venusian plains. Geophys. Res. Lett., 20, 2407–2410.CrossRefGoogle Scholar
McGill, G. E. and Stromquist, A. W. (1979). The grabens of Canyonlands National Park, Utah: Geometry, mechanics, and kinematics. J. Geophys. Res., 84, 4547–4563.CrossRefGoogle Scholar
McGill, G. E., Schultz, R. A., and Moore, J. M. (2000). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah: discussion. J. Struct. Geol., 22, 135–140.CrossRefGoogle Scholar
Means, W. D. (1976). Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists. New York, Springer-Verlag.CrossRefGoogle Scholar
Mége, D. and Masson, P. (1996). Amounts of crustal stretching in Valles Marineris, Mars. Planet. Space Sci., 44, 749–782.CrossRefGoogle Scholar
Mége, D. and Riedel, S. P. (2001). A method for estimating 2D wrinkle ridge strain from application of fault displacement scaling to the Yakima folds, Washington. Geophys. Res. Lett., 28, 3545–3548.CrossRefGoogle Scholar
Mége, D., Cook, A. C., Garel, E., Lagabrielle, Y., and Cormier, M.-H. (2003). Volcanic rifting at Martian graben. J. Geophys. Res., 108, 5044, doi:10.1029/2002JE001852.CrossRefGoogle Scholar
Molnar, P. (1983). Average regional strain due to slip on numerous faults of different orientations. J. Geophys. Res., 88, 6430–6432.CrossRefGoogle Scholar
Moore, J. M. and Schultz, R. A. (1999). Processes of faulting in jointed rocks of Canyonlands National Park, Utah. Geol. Soc. Am. Bull., 111, 808–822.2.3.CO;2>CrossRefGoogle Scholar
Muehlberger, W. R. (1974). Structural history of southeastern Mare Serenitatis and adjacent highlands. Proc. Lunar Sci. Conf. 5, 101–110.Google Scholar
Neuffer, D. P. and Schultz, R. A. (2006). Mechanisms of slope failure in Valles Marineris, Mars. Q. J. Eng. Geol. Hydrogeol., 39, 227–240.CrossRefGoogle Scholar
Neukum, G., Jaumann, R., Hoffmann, H., Hauber, E., Head, J. W., Basilevsky, A. T., Ivanov, B. A., Werner, S. C., Gasselt, S., Murray, J. B., McCord, T., and the HRSC Co-Investigator Team (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432, 971–979.CrossRefGoogle ScholarPubMed
Nicol, A., Watterson, J., Walsh, J. J., and Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. J. Struct. Geol., 18, 235–248.CrossRefGoogle Scholar
Nimmo, F. and Schenk, P. (2006). Normal faulting on Europa: Implications for ice shell properties. J. Struct. Geol., 28, 2194–2203.CrossRefGoogle Scholar
Niño, F., Philip, H., and Chéry, J. (1998). The role of bed-parallel slip in the formation of blind thrust faults. J. Struct. Geol., 20, 503–516.CrossRefGoogle Scholar
Okubo, C. H. and Martel, S. J. (1998). Pit crater formation on Kilauea volcano, Hawaii. J. Volcanol. Geotherm. Res., 86, 1–18.CrossRefGoogle Scholar
Okubo, C. H. and McEwen, A. S. (2007). Fracture controlled paleo-fluid flow in Candor Chasma, Mars. Science, 315, 983–985.CrossRefGoogle ScholarPubMed
Okubo, C. H. and Schultz, R. A. (2003). Thrust fault vergence directions on Mars: A foundation for investigating global-scale Tharsis-driven tectonics. Geophys. Res. Lett., 30, 2154, 10.1029/2003GL018664.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2004). Mechanical stratigraphy in the western equatorial region of Mars based on thrust fault-related fold topography and implications for near-surface volatile reservoirs. Geol. Soc. Am. Bull., 116, 594–605.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2006a). Near-tip stress rotation and the development of deformation band stepover geometries in mode II. Geol. Soc. Am. Bull., 118, 343–348.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2006b). Variability in Early Amazonian Tharsis stress state based on wrinkle ridges and strike-slip faulting. J. Struct. Geol., 28, 2169–2181.CrossRefGoogle Scholar
Okubo, C. H., Schultz, R. A., Chan, M. A., Komatsu, G., and the HiRISE Team (2008a). Deformation band clusters on Mars and implications for subsurface fluid flow. Geol. Soc. Am. Bull., 121 474–482.CrossRefGoogle Scholar
Okubo, C. H., Lewis, K. L., McEwen, A. S., Kirk, R. L., and the HiRISE Team (2008b). Relative age of interior layered deposits in southwest Candor Chasma based on high-resolution structural mapping. J. Geophys. Res., 113, E12002, doi:10.1029/2008JE003181.CrossRefGoogle Scholar
Olson, J. E. (1993). Joint pattern development: Effects of subcritical crack growth and mechanical crack interaction. J. Geophys. Res., 98, 12 251–12 265.CrossRefGoogle Scholar
Olson, J. E. (2003). Sublinear scaling of fracture aperture versus length: An exception or the rule?J. Geophys. Res., 108, 2413, doi:10.1029/2001JB000419.CrossRefGoogle Scholar
Pappalardo, R. T. and Collins, G. C. (2005). Strained craters on Ganymede. J. Struct. Geol., 27, 827–838.CrossRefGoogle Scholar
Paterson, M. S. and Wong, T.-F. (2005). Experimental Rock Deformation: The Brittle Field, 2nd edn. Berlin, Springer.Google Scholar
Peacock, D. C. P. (2002). Propagation, interaction and linkage in normal fault systems. Earth-Sci. Rev., 58, 121–142.CrossRefGoogle Scholar
Peacock, D. C. P. (2003). Scaling of transfer zones in British Isles. J. Struct. Geol., 25, 1561–1567.CrossRefGoogle Scholar
Peacock, D. C. P. and Sanderson, D. J. (1991). Displacement, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., 13, 721–733.CrossRefGoogle Scholar
Peacock, D. C. P. and Sanderson, D. J. (1993). Estimating strain from fault slip using a line sample. J. Struct. Geol., 15, 1513–1516.CrossRefGoogle Scholar
Peacock, D. C. P. and Sanderson, D. J. (1995). Strike-slip relay ramps. J. Struct. Geol., 17, 1351–1360.CrossRefGoogle Scholar
Peacock, D. C. P. and Sanderson, D. J. (1996). Effects of propagation rate on displacement variations along faults. J. Struct. Geol., 18, 311–320.CrossRefGoogle Scholar
Plumb, R. A. (1994). Variations of the least horizontal stress magnitude in sedimentary basins. In Rock Mechanics: Models and Measurements, Challenges from Industry, ed. Nelson, P. and Laubach, S. E.. Rotterdam, Balkema, pp. 71–77.Google Scholar
Polit, A. T. (2005). Influence of mechanical stratigraphy and strain on the displacement–length scaling of normal faults on Mars. M. S. thesis, University of Nevada, Reno.
Polit, A. T., Schultz, R. A., and Soliva, R. (2009). Geometry, displacement–length scaling, and extensional strain of normal faults on Mars with inferences on mechanical stratigraphy of the Martian crust. J. Struct. Geol., 31, 662–673.CrossRefGoogle Scholar
Pollard, D. D. and Fletcher, R. C. (2005). Fundamentals of Structural Geology. Cambridge: Cambridge University Press.Google Scholar
Pollard, D. D. and Segall, P. (1987). Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, dikes, and solution surfaces. In Fracture Mechanics of Rock, ed. Atkinson, B. K.. New York, Academic Press, pp. 277–349.CrossRefGoogle Scholar
Poulimenos, G. (2000). Scaling properties of normal fault populations in the western Corinth Graben, Greece: Implications for fault growth in large strain settings. J. Struct. Geol., 27, 307–322.CrossRefGoogle Scholar
Price, N. J. and Cosgrove, J. W. (1990). Analysis of Geological Structures. Cambridge, Cambridge University Press.Google Scholar
Priest, S. D. (1993). Discontinuity Analysis for Rock Engineering. New York, Chapman and Hall.CrossRefGoogle Scholar
Ravnas, R. and Bondevik, K. (1997). Architecture and controls on the Bathonian Kimmeridgian shallow-marine syn-rift wedges of the Oseberg-Brage area, northern North Sea. Basin Res., 9, 197–226.CrossRefGoogle Scholar
Reches, Z. (1978). Analysis of faulting in three-dimensional strain field. Tectonophys., 47, 109–129.CrossRefGoogle Scholar
Reches, Z. (1983). Faulting of rocks in three-dimensional strain fields II. Theoretical analysis. Tectonophys., 95, 133–156.CrossRefGoogle Scholar
Roberts, G. P., Cowie, P., Papanikolaou, I., and Michetti, A. M. (2004). Fault scaling relationships, deformation rates and seismic hazards: An example from the Lazio-Abruzzo Apennines, central Italy. J. Struct. Geol., 26, 377–398.CrossRefGoogle Scholar
Rubin, A. M. (1992). Dike-induced faulting and graben subsidence in volcanic rift zones. J. Geophys. Res., 97, 1839–1858.CrossRefGoogle Scholar
Rubin, A. M. and Pollard, D. D. (1988). Dike-induced faulting in rift zones of Iceland and Afar. Geology, 16, 413–417.2.3.CO;2>CrossRefGoogle Scholar
Schenk, P. and McKinnon, W. B. (1989). Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell. Icarus, 79, 75–100.CrossRefGoogle Scholar
Schlische, R. W., Young, S. S., Ackerman, R. V., and Gupta, A. (1996). Geometry and scaling relations of a population of very small rift related normal faults. Geology, 24, 683–686.2.3.CO;2>CrossRefGoogle Scholar
Scholz, C. H. (1997). Earthquake and fault populations and the calculation of brittle strain. Geowiss., 15, 124–130.Google Scholar
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37–42.CrossRefGoogle Scholar
Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Scholz, C. H. and Cowie, P. A. (1990). Determination of total strain from faulting using slip measurements. Nature, 346, 837–838.CrossRefGoogle Scholar
Scholz, C. H. and Lawler, T. M. (2004). Slip tapers at the tips of faults and earthquake ruptures. Geophys. Res. Lett., 31, L21609, 10.1029/2004GL021030.CrossRefGoogle Scholar
Scholz, C. H., Dawers, N. H., Yu, J.-Z., and Anders, M. H. (1993). Fault growth and fault scaling laws: Preliminary results. J. Geophys. Res., 98, 21 951–21 961.CrossRefGoogle Scholar
Schultz, R. A. (1989). Strike-slip faulting of ridged plains near Valles Marineris, Mars. Nature, 341, 424–426.CrossRefGoogle Scholar
Schultz, R. A. (1991). Structural development of Coprates Chasma and western Ophir Planum, central Valles Marineris rift, Mars. J. Geophys. Res., 96, 22 777–22 792.CrossRefGoogle Scholar
Schultz, R. A. (1992). Mechanics of curved slip surfaces in rock. Eng. Anal. Bound. Elem., 10, 147–154.CrossRefGoogle Scholar
Schultz, R. A. (1993). Brittle strength of basaltic rock masses with application to Venus. J. Geophys. Res., 98, 10 883–10 895.CrossRefGoogle Scholar
Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech. Rock Eng., 28, 1–15.CrossRefGoogle Scholar
Schultz, R. A. (1996). Relative scale and the strength and deformability of rock masses. J. Struct. Geol., 18, 1139–1149.CrossRefGoogle Scholar
Schultz, R. A. (1997). Displacement–length scaling for terrestrial and Martian faults: Implications for Valles Marineris and shallow planetary grabens. J. Geophys. Res., 102, 12 009–12 015.CrossRefGoogle Scholar
Schultz, R. A. (1999). Understanding the process of faulting: Selected challenges and opportunities at the edge of the 21st century. J. Struct. Geol., 21, 985–993.CrossRefGoogle Scholar
Schultz, R. A. (2000a). Fault-population statistics at the Valles Marineris Extensional Province, Mars: Implications for segment linkage, crustal strains, and its geodynamical development. Tectonophys., 316, 169–193.CrossRefGoogle Scholar
Schultz, R. A. (2000b). Localization of bedding plane slip and backthrust faults above blind thrust faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12 035–12 052.CrossRefGoogle Scholar
Schultz, R. A. (2002). Stability of rock slopes in Valles Marineris, Mars. Geophys. Res. Lett., 30, 1932, 10.1029/2002GL015728.Google Scholar
Schultz, R. A. (2003a). A method to relate initial elastic stress to fault population strains. Geophys. Res. Lett., 30, 1593, 10.1029/2002GL016681.CrossRefGoogle Scholar
Schultz, R. A. (2003b). Seismotectonics of the Amenthes Rupes thrust fault population, Mars. Geophys. Res. Lett., 30, 1303, 10.1029/2002GL016475.CrossRefGoogle Scholar
Schultz, R. A. and Aydin, A. (1990). Formation of interior basins associated with curved faults in Alaska. Tectonics, 9, 1387–1407.CrossRefGoogle Scholar
Schultz, R. A. and Balasko, C. M. (2003). Growth of deformation bands into echelon and ladder geometries. Geophys. Res. Lett., 30, 2033, 10.1029/2003GL018449.CrossRefGoogle Scholar
Schultz, R. A. and Fori, A. N. (1996). Fault-length statistics and implications of graben sets at Candor Mensa, Mars. J. Struct. Geol., 18, 373–383.CrossRefGoogle Scholar
Schultz, R. A. and Fossen, H. (2002). Displacement–length scaling in three dimensions: The importance of aspect ratio and application to deformation bands. J. Struct. Geol., 24, 1389–1411.CrossRefGoogle Scholar
Schultz, R. A. and Fossen, H. (2008). Terminology for structural discontinuities. Am. Assoc. Petrol. Geol. Bull., 92, 853–867.Google Scholar
Schultz, R. A. and Lin, J. (2001). Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamic implications. J. Geophys. Res., 106, 16 549–16 566.CrossRefGoogle Scholar
Schultz, R. A. and Watters, T. R. (2001). Forward mechanical modeling of the Amenthes Rupes thrust fault on Mars. Geophys. Res. Lett., 28, 4659–4662.CrossRefGoogle Scholar
Schultz, R. A. and Zuber, M. T. (1994). Observations, models, and mechanisms of failure of surface rocks surrounding planetry surface loads. J. Geophys. Res., 99, 14 691–14 702.CrossRefGoogle Scholar
Schultz, R. A., Okubo, C. H., Goudy, C. L., and Wilkins, S. J. (2004). Igneous dikes on Mars revealed by MOLA topography. Geology, 32, 889–892.CrossRefGoogle Scholar
Schultz, R. A., Okubo, C. H., and Wilkins, S. J. (2006). Displacement–length scaling relations for faults on the terrestrial planets. J. Struct. Geol., 28, 2182–2193.CrossRefGoogle Scholar
Schultz, R. A., Moore, J. M., Grosfils, E. B., Tanaka, K. L., and Mège, D. (2007). The Canyonlands model for planetary grabens: Revised physical basis and implications. In The Geology of Mars: Evidence from Earth-Based Analogues, ed. Chapman, M. G.. Cambridge: Cambridge University Press, pp. 371–399.CrossRefGoogle Scholar
Schultz, R. A., Soliva, R., Fossen, H., Okubo, C. H., and Reeves, D. M. (2008). Dependence of displacement–length scaling relations for fractures and deformation bands on the volumetric changes across them. J. Struct. Geol. 30, 1405–1411.CrossRefGoogle Scholar
Segall, P. (1984a). Formation and growth of extensional fracture sets. Geol. Soc. Am. Bull., 95, 454–462.2.0.CO;2>CrossRefGoogle Scholar
Segall, P. (1984b). Rate-dependent extensional deformation resulting from crack growth in rock. J. Geophys. Res., 89, 4185–4195.CrossRefGoogle Scholar
Segall, P. and Pollard, D. D. (1980). Mechanics of discontinuous faults. J. Geophys. Res., 85, 4337–4350.CrossRefGoogle Scholar
Segall, P. and Pollard, D. D. (1983). Joint formation in granitic rock of the Sierra Nevada. Geol. Soc. Am. Bull., 94, 563–575.2.0.CO;2>CrossRefGoogle Scholar
Sharpton, V. L. and Head, J. W. (1988). Lunar mare ridges: Analysis of ridge-crater intersections and implications for the tectonic origin of mare ridges. Proc. Lunar Planet. Sci. Conf. 18, 307–317.Google Scholar
Shaw, J. H., Plesch, A., Dolan, J. F., Pratt, T. L., and Fiore, P. (2002). Puente Hills blind-thrust system, Los Angeles, California. Seismol. Soc. Am. Bull., 92, 2946–2960.CrossRefGoogle Scholar
Sibson, R. H. (1974). Frictional constraints on thrust, wrench and normal faults. Nature, 249, 542–544.CrossRefGoogle Scholar
Sibson, R. H. (1994). An assessment of field evidence for ‘Byerlee’ friction. Pure Appl. Geophys., 142, 645–662.CrossRefGoogle Scholar
Soliva, R. and Benedicto, A. (2004). A linkage criterion for segmented normal faults. J. Struct. Geol., 26, 2251–2267.CrossRefGoogle Scholar
Soliva, R. and Benedicto, A. (2005). Geometry, scaling relations and spacing of vertically restricted normal faults. J. Struct. Geol., 27, 317–325.CrossRefGoogle Scholar
Soliva, R. and Schultz, R. A. (2008). Distributed and localized faulting in extensional settings: Insight from the North Ethiopian Rift – Afar transition area. Tectonics, 27, TC2003, doi:10.1029/2007TC002148.CrossRefGoogle Scholar
Soliva, R., Schultz, R. A., and Benedicto, A. (2005). Three-dimensional displacement–length scaling and maximum dimension of normal faults in layered rocks. Geophys. Res. Lett., 32, L16302, 10.1029/2005GL023007.CrossRefGoogle Scholar
Soliva, R., Benedicto, A., and Maerten, L. (2006). Spacing and linkage of confined normal faults: Importance of mechanical thickness. J. Geophys. Res., 110, B01402, 10.1029/2004JB003507.Google Scholar
Solomon, S. C., McNutt, R. L., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A., and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER's first Mercury flyby. Science, 321, 59–62.CrossRefGoogle ScholarPubMed
Sornette, A., Davy, P., and Sornette, D. (1990). Growth of fractal fault patterns. Phys. Rev. Lett., 65, 2266–2269.CrossRefGoogle ScholarPubMed
Suppe, J. (1985). Principles of Structural Geology. Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
Suppe, J. and Connors, C. (1992). Critical-taper wedge mechanics of fold-and-thrust belts on Venus: Initial results from Magellan. J. Geophys. Res., 97, 13 545–13 561.CrossRefGoogle Scholar
Tchalenko, J. S. (1970). Similarities between shear zones of different magnitudes. Geol. Soc. Am. Bull., 81, 1625–1640.CrossRefGoogle Scholar
Tse, S. T. and Rice, J. R. (1986). Crustal earthquake instability in relation to the variation of frictional slip properties. J. Geophys. Res., 91, 9452–9472.CrossRefGoogle Scholar
Villemin, T. and Sunwoo, C. (1987). Distribution logarithmique self similaire des rejets et longueurs de failles: Exemple du bassin Houiller Lorrain. Compte Rendu Acad. Sci., Série II, 305, 1309–1312.Google Scholar
Walsh, J. J. and Watterson, J. (1987). Distribution of cumulative displacement and seismic slip on a single normal fault surface. J. Struct. Geol., 9, 1039–1046.CrossRefGoogle Scholar
Walsh, J. J. and Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. J. Struct. Geol., 10, 239–247.CrossRefGoogle Scholar
Walsh, J. J., Watterson, J., and Yielding, G. (1991). The importance of small-scale faulting in regional extension. Nature, 351, 391–393.CrossRefGoogle Scholar
Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., and Bonson, C. G. (2003). Formation of segmented normal faults: A 3-D perspective. J. Struct. Geol., 25, 1251–1262.CrossRefGoogle Scholar
Watters, T. R. (2003). Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. J. Geophys. Res., 108, 5054, 10.1029/2002JE001934.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (1998). Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology, 26, 991–994.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., and Robinson, M. S. (2000). Displacement–length scaling relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophys. Res. Lett., 27, 3659–3662.CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S., and Cook, A. C. (2002). The mechanical and thermal structure of Mercury's early lithosphere. Geophys. Res. Lett., 29, 10.1029/2001GL014308.CrossRefGoogle Scholar
Watterson, J. (1986). Fault dimensions, displacements and growth. Pure Appl. Geophys., 124, 365–373.CrossRefGoogle Scholar
Weijermars, R. (1997). Principles of Rock Mechanics. Amsterdam: Alboran Science Publishing.Google Scholar
Weissel, J. K. and Karner, G. D. (1989). Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J. Geophys. Res., 94, 13 919–13 950.CrossRefGoogle Scholar
Wesnousky, S. G. (1994). The Gutenberg-Richter or characteristic earthquake distribution, which is it?Seismol. Soc. Am. Bull., 84, 1940–1959.Google Scholar
Wesnousky, S. G. (1999). Crustal deformation processes and the stability of the Gutenberg-Richter relationship. Seismol. Soc. Am. Bull., 89, 1131–1137.Google Scholar
Westaway, R. (1992). Seismic moment summation for historical earthquakes in Italy: Tectonic implications. J. Geophys. Res., 97, 15 437–15 464.CrossRefGoogle Scholar
Westaway, R. (1994). Quantitative analysis of populations of small faults. J. Struct. Geol., 16, 1259–1273.CrossRefGoogle Scholar
Wibberley, C. A. J., Petit, J.-P., and Rives, T. (1999). Mechanics of high displacement gradient faulting prior to lithification. J. Struct. Geol., 21, 251–257.CrossRefGoogle Scholar
Wibberley, C. A. J., Petit, J.-P., and Rives, T. (2000). Mechanics of cataclastic ‘deformation band’ faulting in high-porosity sandstone, Provence. Comptes Rendus Acad. Sci., Paris, 331, 419–425.Google Scholar
Wilkins, S. J. and Gross, M. R. (2002). Normal fault growth in layered rocks at Split Mountain, Utah: Influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling. J. Struct. Geol., 24, 1413–1429 (erratum, J. Struct. Geol., 24, 2007).CrossRefGoogle Scholar
Wilkins, S. J. and Schultz, R. A. (2003). Cross faults in extensional settings: Stress triggering, displacement localization, and implications for the origin of blunt troughs in Valles Marineris, Mars. J. Geophys. Res., 108, 5056, 10.1029/2002JE001968.CrossRefGoogle Scholar
Wilkins, S. J. and Schultz, R. A. (2005). 3D cohesive end-zone model for source scaling of strike-slip interplate earthquakes. Seismol. Soc. Am. Bull., 95, 2232–2258.CrossRefGoogle Scholar
Wilkins, S. J., Schultz, R. A., Anderson, R. C., Dohm, J. M., and Dawers, N. C. (2002). Deformation rates from faulting at the Tempe Terra extensional province, Mars. Geophys. Res. Lett., 29, 1884, 10.1029/2002GL015391.CrossRefGoogle Scholar
Willemse, E. J. M. (1997). Segmented normal faults: Correspondence between three-dimensional mechanical models and field data. J. Geophys. Res., 102, 675–692.CrossRefGoogle Scholar
Willemse, E. J. M., Pollard, D. D., and Aydin, A. (1996). Three-dimensional analyses of slip distributions on normal fault arrays with consequences for fault scaling. J. Struct. Geol., 18, 295–309.CrossRefGoogle Scholar
Williams, C. A., Connors, C., Dahlen, F. A., Price, E. J., and Suppe, J. (1994). Effect of the brittle-ductile transition on the topography of compressive mountain belts on the Earth and Venus. J. Geophys. Res., 99, 19 947–19 974.CrossRefGoogle Scholar
Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. J. Appl. Mech., 24, 109–114.Google Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben system as the surface manifestation of plume-related dike intrusion complexes: Models and implications. J. Geophys. Res., 107, 5057, doi:10.1029/2001JE001593.CrossRefGoogle Scholar
Wojtal, S. (1989). Measuring displacement gradients and strains in faulted rocks. J. Struct. Geol., 11, 669–678.CrossRefGoogle Scholar
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., and Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. Int. J. Rock Mech. Min. Sci., 40, 1049–1076.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fault populations
    • By Richard A. Schultz, Geomechanics – Rock Fracture Group, Department of Geological Sciences and Engineering, University of Nevada, Reno, Roger Soliva, Université Montpellier II, Département des Sciences de la Terre et de l'Environnement, France, Chris H. Okubo, U.S. Geological Survey, Flagstaff, Daniel Mège, Laboratoire de Planetologie et Geodynamique, UFR des Sciences et Techniques Université de Nantes, France
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fault populations
    • By Richard A. Schultz, Geomechanics – Rock Fracture Group, Department of Geological Sciences and Engineering, University of Nevada, Reno, Roger Soliva, Université Montpellier II, Département des Sciences de la Terre et de l'Environnement, France, Chris H. Okubo, U.S. Geological Survey, Flagstaff, Daniel Mège, Laboratoire de Planetologie et Geodynamique, UFR des Sciences et Techniques Université de Nantes, France
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fault populations
    • By Richard A. Schultz, Geomechanics – Rock Fracture Group, Department of Geological Sciences and Engineering, University of Nevada, Reno, Roger Soliva, Université Montpellier II, Département des Sciences de la Terre et de l'Environnement, France, Chris H. Okubo, U.S. Geological Survey, Flagstaff, Daniel Mège, Laboratoire de Planetologie et Geodynamique, UFR des Sciences et Techniques Université de Nantes, France
  • Edited by Thomas R. Watters, Smithsonian Institution, Washington DC, Richard A. Schultz, University of Nevada, Reno
  • Book: Planetary Tectonics
  • Online publication: 30 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691645.011
Available formats
×