Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T02:19:31.767Z Has data issue: false hasContentIssue false

11 - On the Relative Character of Quantum Correlations

from Part III - Probability, Correlations, and Information

Published online by Cambridge University Press:  04 July 2017

Olimpia Lombardi
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Sebastian Fortin
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Federico Holik
Affiliation:
National University of La Plata, Argentina, and National Council of Scientific and Technical Research
Cristian López
Affiliation:
University of Buenos Aires, Argentina, and National Council of Scientific and Technical Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacciagaluppi, G. (2012). “The Role of Decoherence in Quantum Mechanics.” In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/archives/win2012/entries/qm-decoherence/.Google Scholar
Balachandran, A. P., Govindarajan, T. R., de Queiroz, A. R., and Reyes-Lega, A. F. (2013a). “Algebraic Approach to Entanglement and Entropy.” Physical Review A, 88: 022301.CrossRefGoogle Scholar
Balachandran, A. P., Govindarajan, T. R., de Queiroz, A. R., and Reyes-Lega, A. F. (2013b). “Entanglement and Particle Identity: A Unifying Approach.” Physical Review Letters, 110: 080503.CrossRefGoogle ScholarPubMed
Barnum, H., Knill, E., Ortiz, G., Somma, R., and Viola, L. (2003). “Generalizations of Entanglement Based on Coherent States and Convex Sets.” Physical Review A, 68: 032308.CrossRefGoogle Scholar
Barnum, H., Knill, E., Ortiz, G., Somma, R., and Viola, L. (2004). “A Subsystem-Independent Generalization of Entanglement.” Physical Review Letters, 92: 107902.CrossRefGoogle ScholarPubMed
Barnum, H., Ortiz, G., Somma, R., and Viola, L. (2005). “A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables.” International Journal of Theoretical Physics, 44: 2127.CrossRefGoogle Scholar
Baumgratz, T., Cramer, M., and Plenio, M. B. (2014). “Quantifying Coherence.” Physical Review Letters, 113: 140401.CrossRefGoogle ScholarPubMed
Bell, J. S. (1964). “On the Einstein-Podolsky-Rosen Paradox.” Physics, 1: 195200.CrossRefGoogle Scholar
Bellomo, G., Majtey, A. P., Plastino, A. R., and Plastino, A. (2014). “Quantum Correlations from Classically-Correlated States.” Physica A: Statistical Mechanics and Its Applications, 405: 260266.CrossRefGoogle Scholar
Bellomo, G., Plastino, A., and Plastino, A. R. (2015). “Classical Extension of Quantum-Correlated Separable States.” International Journal of Quantum Information, 13: 1550015.CrossRefGoogle Scholar
Bellomo, G., Plastino, A., and Plastino, A. R. (2016). “Quantumness and the role of locality on quantum correlations.” Physical Review A, 93: 062322.CrossRefGoogle Scholar
Benatti, F., Floreanini, R., and Marzolino, U. (2010). “Sub-Shot-Noise Quantum Metrology with Entangled Identical Particles.” Annals of Physics, 325: 924935.CrossRefGoogle Scholar
Benatti, F., Floreanini, R., and Marzolino, U. (2014a). “Entanglement in Fermion Systems and Quantum Metrology.” Physical Review A, 89: 032326.CrossRefGoogle Scholar
Benatti, F., Floreanini, R., and Titimbo, K. (2014b). “Entanglement of Identical Particles.” Open Systems & Information Dynamics, 21: 1440003.CrossRefGoogle Scholar
Bengtsson, I. and Zyczkowski, K. (2006). Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bennett, C. H., Bernstein, H. J., Popescu, S., and Schumacher, B. (1996). “Concentrating Partial Entanglement by Local Operations.” Physical Review A, 53: 2046.CrossRefGoogle ScholarPubMed
Bennett, C. H., Di Vincenzo, D. P., Fuchs, C. A., Mor, T., Rains, E., Shor, P. W., and Wootters, W. K. (1999). “Quantum Nonlocality without Entanglement.” Physical Review A, 59: 1070.CrossRefGoogle Scholar
Born, M. (1926). “Quantenmechanik der Stoßvorgänge.” Zeitschrift für Physik, 38: 803827.CrossRefGoogle Scholar
Bratteli, O. and Robinson, D. W. (2012). Operator Algebras and Quantum Statistical Mechanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of States. Berlin: Springer-Verlag.Google Scholar
Brunner, N., Gisin, N., and Scarani, V. (2005). “Entanglement and Non-locality Are Different Resources.” New Journal of Physics, 7: 88.CrossRefGoogle Scholar
Bruß, D. (1999). “Entanglement Splitting of Pure Bipartite Quantum States.” Physical Review A, 60: 4344.CrossRefGoogle Scholar
Castagnino, M., Fortin, S., Laura, R., and Lombardi, O. (2008). “A General Theoretical Framework for Decoherence in Open and Closed Systems.” Classical and Quantum Gravity, 25: 154002.CrossRefGoogle Scholar
Castagnino, M., Fortin, S., and Lombardi, O. (2009). “Decoherence as a Relative Phenomenon: A Generalization of the Spin-Bath Model.” arXiv preprint, arXiv:0907.1933.Google Scholar
Castagnino, M., Fortin, S., and Lombardi, O. (2010a). “Suppression of Decoherence in a Generalization of the Spin-Bath Model.” 43: 065304.CrossRefGoogle Scholar
Castagnino, M., Fortin, S., and Lombardi, O. (2010b). “Is the Decoherence of a System the Result of Its Interaction with the Environment?Modern Physics Letters A, 25: 14311439.CrossRefGoogle Scholar
De la Torre, A. C., Goyeneche, D., and Leitao, L. (2010). “Entanglement for All Quantum States.” European Journal of Physics, 31: 325332.CrossRefGoogle Scholar
Derkacz, Ł., Gwóźdź, M., and Jakóbczyk, L. (2012). “Entanglement beyond Tensor Product Structure: Algebraic Aspects of Quantum Non-separability.” Journal of Physics A: Mathematical and Theoretical, 45: 025302.CrossRefGoogle Scholar
Devi, A. U. and Rajagopal, A. K. (2008). “Generalized Information Theoretic Measure to Discern the Quantumness of Correlations.” Physical Review Letters, 100: 140502.CrossRefGoogle Scholar
Earman, J. (2014). “Some Puzzles and Unresolved Issues about Quantum Entanglement.” Erkenntnis, 80: 303337.CrossRefGoogle Scholar
Fock, V. (1932). “Konfigurationsraum und Zweite Quantelung.” Zeitschrift für Physik, 75: 622647.CrossRefGoogle Scholar
Girolami, D. (2014). “Observable Measure of Quantum Coherence in Finite Dimensional Systems.” Physical Review Letters, 113: 170401.CrossRefGoogle ScholarPubMed
Girolami, D., Tufarelli, T., and Adesso, G. (2013). “Characterizing Nonclassical Correlations via Local Quantum Uncertainty.” Physical Review Letters, 110: 240402.CrossRefGoogle ScholarPubMed
Haag, R. (2012). Local Quantum Physics: Fields, Particles, Algebras. Berlin: Springer.Google Scholar
Hamhalter, J. (2003). “Generalized Gleason Theorem.” Pp. 121175 in Quantum Measure Theory. Dordrecht: Springer.CrossRefGoogle Scholar
Harshman, N. L. (2012). “Observables and Entanglement in the Two-Body System.” Pp. 386390 in AIP Conference Proceedings, Quantum Theory: Reconsideration of Foundations 6, Linnaeus University, June 11–14.Google Scholar
Harshman, N. L. and Ranade, K. S. (2011). “Observables Can Be Tailored to Change the Entanglement of Any Pure State.” Physical Review A, 84: 012303.CrossRefGoogle Scholar
Harshman, N. L. and Wickramasekara, S. (2007a). “Galilean and Dynamical Invariance of Entanglement in Particle Scattering.” Physical Review Letters, 98: 080406.CrossRefGoogle ScholarPubMed
Harshman, N. L. and Wickramasekara, S. (2007b). “Tensor Product Structures, Entanglement, and Particle Scattering.” Open Systems & Information Dynamics, 14: 341351.CrossRefGoogle Scholar
Hasse, C. L. (2013). “On the Individuation of Physical Systems in Quantum Theory.” PhD Thesis, University of Adelaide.Google Scholar
Henderson, L. and Vedral, V. (2001). “Classical, Quantum and Total Correlations.” Journal of Physics A: Mathematical and General, 34: 68996905.CrossRefGoogle Scholar
Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. (2009). “Quantum Entanglement.” Reviews of Modern Physics, 81: 865942.CrossRefGoogle Scholar
Jeknić-Dugić, J., Arsenijević, M., and Dugić, M. (2013). Quantum Structures: A View of the Quantum World. Saarbrücken: Lambert Academic Publishing.Google Scholar
Li, N. and Luo, S. (2008). “Classical States versus Separable States.” Physical Review A, 78: 024303.CrossRefGoogle Scholar
Lombardi, O., Ardenghi, J. S., Fortin, S., and Castagnino, M. (2011). “Compatibility between Environment-Induced Decoherence and the Modal-Hamiltonian Interpretation of Quantum Mechanics.” Philosophy of Science, 78: 10241036.CrossRefGoogle Scholar
Lombardi, O., Fortin, S., and Castagnino, M. (2012). “The Problem of Identifying the System and the Environment in the Phenomenon of Decoherence.” In de Regt, H. W., Hartmann, S., and Okasha, S. (eds.), EPSA Philosophy of Science: Amsterdam 2009. Berlin: Springer.Google Scholar
Luo, S. (2003). “Wigner-Yanase Skew Information and Uncertainty Relations.” Physical Review Letters, 91: 180403.CrossRefGoogle ScholarPubMed
Lychkovskiy, O. (2013). “Dependence of Decoherence-Assisted Classicality on the Way a System Is Partitioned into Subsystems.” Physical Review A, 87: 022112.CrossRefGoogle Scholar
Messiah, A. M. L. and Greenberg, O. W. (1964). “Symmetrization Postulate and Its Experimental Foundation.” Physical Review, 136: B248B267.CrossRefGoogle Scholar
Modi, K., Brodutch, A., Cable, H., Paterek, T., and Vedral, V. (2012). “The Classical-Quantum Boundary for Correlations: Discord and Related Measures.” Reviews of Modern Physics, 84: 16551707.CrossRefGoogle Scholar
Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.Google Scholar
Ollivier, H. and Zurek, W. H. (2001). “Quantum Discord: A Measure of the Quantumness of Correlations.” Physical Review Letters, 88: 017901.CrossRefGoogle ScholarPubMed
Plastino, A., Bellomo, G., and Plastino, A. R. (2015). “Quantum State Space-Dimension as a Quantum Resource.” International Journal of Quantum Information, 13: 1550039.CrossRefGoogle Scholar
Popescu, S. (1994). “Bell’s Inequalities versus Teleportation: What Is Nonlocality?Physical Review Letters, 72: 797799.CrossRefGoogle ScholarPubMed
Raggio, G. A. (1988). “A Remark on Bell’s Inequality and Decomposable Normal States.” Letters in Mathematical Physics, 15: 2729.CrossRefGoogle Scholar
Rédei, M. (2013). Quantum Logic in Algebraic Approach. Dordrecht: Springer.Google Scholar
Schlosshauer, M. A. (2007). Decoherence and the Quantum-to-Classical Transition. Dordrecht: Springer.Google Scholar
Schrödinger, E. (1935). “Discussion of Probability Relations between Separated Systems.” Mathematical Proceedings of the Cambridge Philosophical Society, 31: 555563.CrossRefGoogle Scholar
Thirring, W., Bertlmann, R. A., Köhler, P., and Narnhofer, H. (2011). “Entanglement or Separability: The Choice of How to Factorize the Algebra of a Density Matrix.” The European Physical Journal D, 64: 181196.CrossRefGoogle Scholar
Tommasini, P., Timmermans, E., and de Toledo Piza, A. (1998). “The Hydrogen Atom as an Entangled Electron-Proton System.” American Journal of Physics, 66: 881886.CrossRefGoogle Scholar
Vidal, G., Hammerer, K., and Cirac, J. I. (2002). “Interaction Cost of Nonlocal Gates.” Physical Review Letters, 88: 237902.CrossRefGoogle ScholarPubMed
Viola, L. and Barnum, H. (2010). “Entanglement and Subsystems, Entanglement beyond Subsystems and All That.” Pp. 1643 in Bokulich, A. and Jaeger, G. (eds.), Philosophy of Quantum Information and Entanglement. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Viola, L., Barnum, H., Knill, E., Ortiz, G., and Somma, R. (2005). “Entanglement beyond Subsystems.” Contemporary Mathematics, 381: 117.CrossRefGoogle Scholar
Wallace, D. (2003). “Everett and Structure.” Studies in History and Philosophy of Modern Physics, 34: 87105.CrossRefGoogle Scholar
Wallace, D. (2012). “Decoherence and Its Role in the Modern Measurement Problem.” Philosophical Transactions of the Royal Society A, 370: 45764593.CrossRefGoogle ScholarPubMed
Werner, W. F. (1989). “Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden Variable Model.” Physical Review A, 40: 42774281.CrossRefGoogle ScholarPubMed
Wigner, E. P. and Yanase, M. M. (1963). “Information Contents of Distributions.” Proceedings of the National Academy of Sciences of the United States of America, 49: 910918.CrossRefGoogle ScholarPubMed
Zanardi, P. (2001). “Virtual Quantum Subsystems.” Physical Review Letters, 87: 077901.CrossRefGoogle ScholarPubMed
Zanardi, P., Lidar, D. A., and Lloyd, S. (2004). “Quantum Tensor Product Structures Are Observable Induced.” Physical Review Letters, 92: 060402.CrossRefGoogle ScholarPubMed
Zeh, D. H. (1970). “On the Interpretation of Measurement in Quantum Theory.” Foundations of Physics, 1: 6976.CrossRefGoogle Scholar
Zurek, W. H. (1981). “Pointer Basis of Quantum Apparatus: Into what Mixture Does the Wave Packet Collapse?Physical Review D, 24: 15161525.CrossRefGoogle Scholar
Zurek, W. H. (1982). “Environment-Induced Superselection Rules.” Physical Review D, 26: 18621880.CrossRefGoogle Scholar
Zurek, W. H. (1998). “Decoherence, Einselection and the Existential Interpretation (The Rough Guide).” Philosophical Transactions of the Royal Society of London, Series A: Mathematical Physical and Engineering Sciences, 356: 17931821.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×