Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T04:42:45.822Z Has data issue: false hasContentIssue false

Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision

Published online by Cambridge University Press:  06 December 2023

Keerthi S. Chandran
Affiliation:
Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India keerthischandran@gmail.com Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India kuntal@isical.ac.in
Amrita Mukherjee Paul
Affiliation:
Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India keerthischandran@gmail.com Applied Sciences, IIIT Allahabad, Prayagraj, UP, India rss2020501@iiita.ac.in
Avijit Paul
Affiliation:
Biomedical Engineering, Tufts University, Medford, MA, USA avijit.paul@tufts.edu
Kuntal Ghosh
Affiliation:
Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India kuntal@isical.ac.in

Abstract

Psychologically faithful deep neural networks (DNNs) could be constructed by training with psychophysics data. Moreover, conventional DNNs are mostly monocular vision based, whereas the human brain relies mainly on binocular vision. DNNs developed as smaller vision agent networks associated with fundamental and less intelligent visual activities, can be combined to simulate more intelligent visual activities done by the biological brain.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruce, V., Green, P. R., & Georgeson, M. A. (2003). Visual perception: Physiology, psychology, & ecology. Psychology Press.Google Scholar
Chandran, K. S., & Ghosh, K. (2021). Recurrent convolutional neural networks trained by psychophysics data can predict EEG response to flicker. Perception, 50(ECVP2021 Supplement), 1244. https://doi.org/10.1177/03010066211059887Google Scholar
Chandran, K. S., & Ghosh, K. (2022). An in-silica computation of alpha oscillations from apparently unrelated psychophysics data. https://doi.org/10.21203/rs.3.rs-1862596/v1CrossRefGoogle Scholar
Fan, R., Wang, L., Junaid Bocus, M., & Pitas, I. (2023). Computer stereo vision for autonomous driving: Theory and algorithms. Studies in Computational Intelligence, 4170. https://doi.org/10.1007/978-3-031-18735-3_3CrossRefGoogle Scholar
Ghosh, K., & Chandran, K. S. (2021). A low-cost device and technique for generating big data in visual psychophysics to train brain models. Perception, 50(ECVP2021 Supplement), 1244. https://doi.org/10.1177/03010066211059887Google Scholar
Gomez-Villa, A., Martín, A., Vazquez-Corral, J., Bertalmío, M., & Malo, J. (2020). Color illusions also deceive CNNs for low-level vision tasks: Analysis and implications. Vision Research, 176, 156174. https://doi.org/10.1016/j.visres.2020.07.010CrossRefGoogle ScholarPubMed
Jahrens, M., & Martinetz, T. (2020). Solving Raven's progressive matrices with multi-layer relation networks. In 2020 International joint conference on neural networks (IJCNN). Jointly organized by the IEEE Computational Intelligence Society (CIS) and the International Neural Network Society (INNS), Glasgow, UK (pp. 1-6). https://doi.org/10.1109/ijcnn48605.2020.9207319CrossRefGoogle Scholar
Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 11481160. https://doi.org/10.1038/s41593-018-0210-5CrossRefGoogle ScholarPubMed
Kubota, Y., Hiyama, A., & Inami, M. (2021). A machine learning model perceiving brightness optical illusions: Quantitative evaluation with psychophysical data. In Proceedings of the Augmented Humans International Conference 2021 (AHs '21). Association for Computing Machinery, New York, NY, USA (pp. 174–182). https://doi.org/10.1145/3458709.3458952CrossRefGoogle Scholar
Minsky, M. (1988). Prologue. In The society of mind (p. 17). Simon & Schuster.Google Scholar
Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., & Iwai, A. (2019). An automated fruit harvesting robot by using deep learning. ROBOMECH Journal, 6(1), 13. https://doi.org/10.1186/s40648-019-0141-2CrossRefGoogle Scholar
Read, J. C. A. (2015). The place of human psychophysics in modern neuroscience. Neuroscience, 296, 116129. https://doi.org/10.1016/j.neuroscience.2014.05.036CrossRefGoogle ScholarPubMed
Turing, A. M. (1950). I. – Computing machinery and intelligence. Mind; A Quarterly Review of Psychology and Philosophy, LIX(236), 433460. https://doi.org/10.1093/mind/lix.236.433CrossRefGoogle Scholar
Westlake, W. (2001). Is a one eyed racing driver safe to compete? Formula one (eye) or two? British Journal of Ophthalmology, 85(5), 619624. https://doi.org/10.1136/bjo.85.5.619CrossRefGoogle ScholarPubMed
Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679684. https://doi.org/10.1038/331679a0CrossRefGoogle ScholarPubMed