Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T06:57:11.580Z Has data issue: false hasContentIssue false

14 - Structure-based design of novel P2-P4 macrocyclic inhibitors of hepatitis C NS3/4A protease

from PART III - APPLICATIONS TO DRUG DISCOVERY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

INTRODUCTION

Approximately 170 million people worldwide are chronically infected with hepatitis C virus (HCV), a (+)-strand RNA virus of the Flaviviridae family, which is spread primarily by direct contact with human blood. HCV causes chronic liver disease, including cirrhosis and hepatocellular carcinoma. At present, HCV is a leading cause of death in HIV co-infected patients and is the most common indication for liver transplantation. In the United States alone, data from death certificates suggest that there are 10,000 to 12,000 deaths annually due to hepatitis C.

Unlike HIV, HCV can be “cured”; that is, patients can achieve a sustained virologic response (SVR), in which the virus remains undetectable after termination of therapy. The current standard of care for the most prevalent genotype 1 infection is a regimen of pegylated interferon (IFN) plus ribavirin for 48 weeks. Due to limited efficacy (only about half of genotype 1 patients are able to achieve SVR at twenty-four weeks post-therapy) and significant side effects (e.g., injection site inflammation, flu-like symptoms, depression, and anemia), many patients discontinue treatment. Thus, there is a significant need to improve efficacy, reduce the duration of treatment, and develop an IFN-free regimen with a more convenient route of administration.

DRUG DESIGN TARGET

Several promising antiviral targets for HCV have emerged in recent years. As with HIV, most efforts have focused on inhibiting the key viral enzymes (see Figure 14.1). Inhibitors of one such target, HCV NS3/4A, have perhaps shown the most dramatic antiviral effects.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 209 - 214
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hepatitis C – global prevalence (update). Weekly Epidemiology Record 1999, 74, 425–427.
Alter, M. J.Epidemiology of hepatitis C. Hepatology 1997, 26, 62S–65S.Google Scholar
Liang, T. J.; Heller, T.VX-950, a novel hepatitis C virus (HCV) NS3-4A protease inhibitor, exhibits potent antiviral activities in HCV replicon cells. Gastroenterology 2004, 127, S62–S71.Google Scholar
Salmon-Ceron, D.; Lewden, C.; Morlat, P.; Bevilacqua, S.; Jougla, E.; Bonnet, F.; Heripret, L.; Costagliola, D.; May, T.; Chene, G.Liver disease as a major cause of death among HIV infected patients: role of hepatitis C and B viruses and alcohol. J. Hepatol. 2005, 42, 799–805.Google Scholar
Brown, R. S.Hepatitis C and liver transplantation. Nature 2005, 436, 973–978.Google Scholar
In Management of Hepatitis C: 2002; National Institutes of Health, 2002. http://consensus.nih.gov/2002/2002HepatitisC2002116html.htm.
Poynard, T.; Marcellin, P.; Lee, S. S.; Niederau, C.; Minuk, G. S.; Ideo, G.; Bain, V.; Heathcote, J.; Zeuzem, S.; Trepo, C.; Albrecht, J.Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 1998, 352, 1426–1432.Google Scholar
Gordon, C. P.; Keller, P. A.Control of hepatitis C: a medicinal chemistry perspective. J. Med. Chem. 2005, 48, 1–20.Google Scholar
Thomson, J. A.; Perni, R. B.Hepatitis, Cvirus NS3-4A protease inhibitors: countering viral subversion in vitro and showing promise in the clinic. Curr. Opin. Drug Discov. Devel. 2006, 9, 606–617.Google Scholar
Chen, S. H.; Tan, S. L.Discovery of small-molecule inhibitors of HCV NS3-4A protease as potential therapeutic agents against HCV infection. Curr. Med. Chem. 2005, 12, 2317–2342.Google Scholar
Bartenschlager, R.; Ahlborn-Laake, L.; Mous, J.; Jacobsen, H.Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 1993, 67, 3835–3844.Google Scholar
Kolykhalov, A. A.; Mihalik, K.; Feinstone, S. M.; Rice, C. M.Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J. Virol. 2000, 74, 2046–2051.Google Scholar
Llinas-Brunet, M.; Bailey, M. D.; Bolger, G.; Brochu, C.; Faucher, A. M.; Ferland, J. M.; Garneau, M.; Ghiro, E.; Gorys, V.; Grand-Maitre, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard, F.; Poirier, M.; Rheaume, M.; Tsantrizos, Y. S.; Lamarre, D.Structure-activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061. J. Med. Chem. 2004, 47, 1605–1608.Google Scholar
Perni, R. B.; Almquist, S. J.; Byrn, R. A.; Chandorkar, G.; Chaturvedi, P. R.; Courtney, L. F.; Decker, C. J.; Dinehart, K.; Gates, C. A.; Harbeson, S. L.; Heiser, A.; Kalkeri, G.; Kolaczkowski, E.; Lin, K.; Luong, Y. P.; Rao, B. G.; Taylor, W. P.; Thomson, J. A.; Tung, R. D.; Wei, Y.; Kwong, A. D.; Lin, C. Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3-4A serine protease. Antimicrob. Agents Chemother. 2006, 50, 899–909.Google Scholar
Tsantrizos, Y. S.; Bolger, G.; Bonneau, P.; Cameron, D. R.; Goudreau, N.; Kukolj, G.; LaPlante, S. R.; Llinas-Brunet, M.; Nar, H.; Lamarre, D.Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew. Chem. Int. Ed. Engl. 2003, 42, 1356–1360.Google Scholar
Laplante, R.; Llinas-Brunet, M.Dynamics and Structure-based Design of Drugs Targeting the Critical Serine Protease of the Hepatitis C Virus – From a Peptidic Substrate to BILN 2061. Curr. Med. Chem. Antinfect. Agents 2005, 4, 111–132.Google Scholar
Yan, Y.; Li, Y.; Munshi, S.; Sardana, V.; Cole, J. L.; Sardana, M.; Steinkuehler, C.; Tomei, L.; Francesco, R.; Kuo, L. C.; Chen, Z.Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci. 1998, 7, 837–847.Google Scholar
Yao, N.; Reichert, P.; Taremi, S. S.; Prosise, W. W.; Weber, P. C.Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 1999, 7, 1353–1363.Google Scholar
Halgren, T. A.Merck Molecular Force Field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519.Google Scholar
Halgren, T. A.Merck Molecular Force Field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 1996, 17, 520–552.Google Scholar
Halgren, T. A.Merck Molecular Force Field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 1996, 17, 553–586.Google Scholar
Halgren, T. A.; Nachbar, R. B.Merck Molecular Force Field. IV. Conformational energies and geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615.Google Scholar
Halgren, T. A.Merck Molecular Force Field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 1996, 17, 616–641.Google Scholar
Crippen, C. M.; Havel, T. F.Distance Geometry and Molecular Conformation. New York, NY: John Wiley & Sons; 1988.
Kuszewski, J.; Nilges, M.; Brunger, A. T.Sampling and efficiency of metric matrix distance geometry: a novel partial metrization algorithm. J. Biomol. NMR 1992, 2, 33–56.Google Scholar
Wang, R.; Lu, Y.; Fang, X.; Wang, S.An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J. Chem. Inf. Comput. Sci. 2004, 44, 2114–2125.Google Scholar
Liverton, N. J.; Holloway, M. K.; McCauley, J. A.; Rudd, M. T.; Butcher, J. W.; Carroll, S. S.; DiMuzio, J.; Fandozzi, C.; Gilbert, K. F.; Mao, S. S.; McIntyre, C. J.; Nguyen, K. T.; Romano, J. J.; Stahlhut, M.; Wan, B. L.; Olsen, D. B.; Vacca, J. P.Molecular modeling based approach to potent P2-P4 macrocyclic inhibitors of hepatitis C NS3/4A protease. J. Am. Chem. Soc. 2008, 130, 4607–4609.Google Scholar
Mao, S. S.; DiMuzio, J.; McHale, C.; Burlein, C.; Olsen, D.; Carroll, S. S.A time-resolved, internally quenched fluorescence assay to characterize inhibition of hepatitis C virus nonstructural protein 3-4A protease at low enzyme concentrations. Anal. Biochem. 2008, 373, 1–8.Google Scholar
Migliaccio, G.; Tomassini, J. E.; Carroll, S. S.; Tomei, L.; Altamura, S.; Bhat, B.; Bartholomew, L.; Bosserman, M. R.; Ceccacci, A.; Colwell, L. F.; Cortese, R.; Francesco, R.; Eldrup, A. B.; Getty, K. L.; Hou, X. S.; LaFemina, R. L.; Ludmerer, S. W.; MacCoss, M.; McMasters, D. R.; Stahlhut, M. W.; Olsen, D. B.; Hazuda, D. J.; Flores, O. A.Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J. Biol. Chem. 2003, 278, 49164–49170.Google Scholar
Tu, Y.; Scola, P., Michael, Good, , A., Charles, ; Campbell, J. A. Bristol-Myers Squibb. Preparation of prolinamide peptides as hepatitis C virus inhibitors: WO 2005054430, 2005.
Wang, X. A.; Sun, L.-Q.; Sit, S.-Y.; Sin, N.; Scola, P. M.; Hewawasam, P.; Good, A. C.; Chen, Y.; Campbell, J. A. Bristol-Myers Squibb Hepatitis C Virus Inhibitors: US 6,995,174, 2006.
Nicola, T.; Brenner, M.; Donsbach, K.; Kreye, P.First Scale-Up to Production Scale of a Ring Closing Metathesis Reaction Forming a 15-Membered Macrocycle as a Precursor of an Active Pharmaceutical Ingredient. Org. Process Res. Dev. 2005, 9, 513–515.Google Scholar
Marchetti, A.; Ontoria, J. M.; Matassa, V. G.Synthesis of Two Novel Cyclic Biphenyl Ether Analogs of an Inhibitor of HCV NS3 Protease. Synlett 1999, S1, 1000–1002.Google Scholar
Chen, K. X.; Njoroge, F. G.; Pichardo, J.; Prongay, A.; Butkiewicz, N.; Yao, N.; Madison, V.; Girijavallabhan, V.Potent 7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid-based macrocyclic inhibitors of hepatitis C virus NS3 protease. J. Med. Chem. 2006, 49, 567–574.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×