Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T09:18:58.587Z Has data issue: false hasContentIssue false

16 - GPCR 3D modeling

from PART III - APPLICATIONS TO DRUG DISCOVERY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

INTRODUCTION

G-protein-coupled receptors (GPCRs) are a superfamily of membrane proteins that provide cells with the ability to communicate with each other and their environment. The core feature of these proteins is their seven transmembrane helices (7TM) that form a bundle located in the cell membrane (Figure 16.1). The seven helices are linked together by three extracellular loops (ECLs) and three intracellular loops (ICLs) and also include N- and C-terminal regions. This 7TM region is responsible for receiving a wide range of signals from small-molecule amines, peptides, proteins, small odorant and taste molecules, and light, which either bind in the interior of the 7TM bundle or to its extracellular surface or interact with chromophores located in its interior. These external signals trigger the coupling of the ICLs (in particular ICL5) with the heterotrimeric G-protein transducin, which in turn initiates a cascade of signaling events that lead to proliferation, differentiation, development, cell survival, angiogenesis, and hypertrophy. In light of these facts it is not surprising to find that GPCRs are implicated as targets in a wide range of indications, including heart disease, allergies, depression, mental illness, cognition, and hypertension.

The estimated number of GPCRs in humans is ∼1,000 members or ∼1% of the genome. There are five major classes of GPCRs that are defined by their sequence homology and the type of endogenous ligand. The most important of these classes are A, B, and C. GPCRs are dysfunctional or dysregulated in many diseases making them the target of drug therapies.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 248 - 256
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Filmore, D.It's a GPCR worldMod. Drug Discov. 2004, 7, 47–48.Google Scholar
Bockaert, J.; Pin, J. P.Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999, 18, 1723.Google Scholar
Wise, A.; Gearing, K.; Rees, S.Target validation of G-protein coupled receptors. Drug Discov. Today 2002, 7, 235.Google Scholar
Leach, A. R.Molecular Modeling Principles and Applications. Essex, UK: Prentice Hall; 2001.
Müller, G. Towards 3D Structures of G Protein-Coupled Receptors: A Multidisciplinary Approach. Curr. Med. Chem. 2000, 7, 861.Google Scholar
Bleicher, K. H.; Green, L. G.; Martin, R. E.; Rogers-Evans, M.Ligand identification for G-protein-coupled receptors: a lead generation perspective. Curr. Opin. Chem. Biol. 2004, 8, 287.Google Scholar
Walters, W. P.; Stahl, M. T.; Murcko, M. A.Virtual screening – an overview. Drug Discov. Today 1998, 3, 160.Google Scholar
Hawkins, P. C. D.; Skillman, A.G.; Nicholls, A.Comparison of Shape-Matching and Docking as Virtual Screening Tools. J. Med. Chem. 2007, 50, 74.Google Scholar
Clement, O.; Mehl, A.T. In: Pharmacophore Preception, Development, and Use in Drug Design, Guner, O. F., Ed.; La Jolla, CA: International University Line; 2000, 71.
Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M.Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science 2000, 289, 739.Google Scholar
Stenkamp, R. E.; Teller, D. C.; Palczewski, K.Crystal Structure of Rhodopsin: A G-Protein-Coupled Receptor. ChemBioChem 2002, 3, 963.Google Scholar
Rasmussen, S. G. F.; Choi, H. J.; Rosenbaum, D. M.; Kobilka, B. K.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R. P.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F. X.; Weis, W. I.; Kobilka, T. S.Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 2007, 450, 383.Google Scholar
Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C.High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein-Coupled Receptor. Science 2007, 318, 1258.Google Scholar
Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K.GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function. Science 2007, 318, 1266.Google Scholar
Greer, J.Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins 1990, 7, 317.Google Scholar
Lanyi, J.; Luecke, H.Bacteriorhodopsin. Curr. Opin. Struc. Biol. 2001, 11, 415.Google Scholar
Lanyi, J. K.Bacteriorhodopsin. Annu. Rev. Physiol. 2004, 66 665.Google Scholar
Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P; Landau, E. M.X-ray Structure of Bacteriorhodopsin at 2.5 Angstroms from Microcrystals Grown in Lipidic Cubic Phases. Science, 1997, 277, 1676.Google Scholar
Luecke, H.; Richter, H. T.; Lanyi, J. K.Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 1998, 280, 1934.Google Scholar
Luecke, H.; Schobert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. K.Structure of Bacteriorhodopsin at 1.55 Å Resolution. J. Mol. Biol., 1999, 291, 899.Google Scholar
Baldwin, J. M.The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 1993, 12 1693.Google Scholar
Unger, V. M.; Schertler, G. F. X.Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys. J. 1995, 68, 1776.Google Scholar
Schertler, G. F.; Villa, C.; Henderson, R.Projection structure of rhodopsin. Nature 1993, 362, 770.Google Scholar
Pardo, L.; Ballesteros, J. A.; Osman, R.; Weinstein, H.On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4009.Google Scholar
Hibert, M. F.; Trumpp-Kallmeyer, S.; Bruinvels, A.; Hofloack, J.Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 1991, 40, 8.Google Scholar
MaloneyHuss, K.; Lybrand, T. P.Three-dimensional structure for the β2 adrenergic receptor protein based on computer modeling studies. J. Mol. Biol. 1992, 225, 859.Google Scholar
Alorta, I.; Loew, G. H.A 3D model of the ö opioid receptor and ligand-receptor complexes. Protein Eng. 1996, 9, 573.Google Scholar
Archer, E.; Maigret, B.; Escrieut, C.; Pradayrol, L.; Fourmy, D.Rhodopsin crystal: new template yielding realistic models of G-protein-coupled receptors?Trends Pharmacol. Sci. 2003, 24, 36.Google Scholar
Hubbell, W. L.; Altenbach, C.; Hubbell, C. M.; Khorana, H.G.Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 2003, 63, 243.Google Scholar
Kobilka, B.; Schertler, F. X.New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol. Sci. 2008, 29, 79.Google Scholar
Oliveira, L.; Hulsen, T.; Lutje Hulsik, D.; Paiva, A. C.; Vriend, G.Heavier-than-air flying machines are impossible. FEBS Lett. 2004 564, 269.Google Scholar
Hibert, M. F.Protein homology modeling and drug discovery. In: The Practice of Medicinal Chemistry. New York, NY: Academic Press; 1996, 523–546.
Kiss, R.; Koᾓri, Z.; Keserũ, G. M.Homology modeling and binding site mapping of the human histamine H1 receptor Eur. J. Med. Chem. 2004, 39, 959.Google Scholar
Furse, K. E.; Lybrand, T. P.Three-Dimensional Models for β-Adrenergic Receptor Complexes with Agonists and Antagonists. J. Med. Chem. 2003, 46, 4450.Google Scholar
Evers, A; Klabunde, T. Structure-based Drug Discovery Using GPCR Homology Modeling: Successful Virtual Screening for Antagonists of the Alpha1A Adrenergic Receptor. J. Med. Chem. 2005, 48, 1088.Google Scholar
Axe, F. U.; Bembenek, S. D.; Szalma, S.Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. J. Mol. Graph. Model. 2006, 24, 456.Google Scholar
Costanzi, S. On the Applicability of GPCR Homolgy Models to Computer-Aided Drug Discovery: A Comparison between In Silico and Crystal Structures of the β2-Adrenergic Receptor. J. Med. Chem. 2008, 51, 2907.Google Scholar
Becker, O. M.; Marantz, Y.; Shacham, S.; Inbal, B.; Heifetz, A.; Kalid, O.; Bar-Haim, S.; Warshaviak, D.; Fichman, M.; Noiman, S.G Protein-coupled receptors: In silico drug discovery in 3D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11304.Google Scholar
Shacham, S.; Marantz, Y.; Bar-Haim, S.; Kalid, O.; Warshaviak, D.; Avisar, N.; Inbal, B.; Heifetz, A.; Fichman, M.; Topf, M.; Naor, Z.; Noiman, S.; Becker, O.M.PREDICT Modeling and In-Silico Screening for G-Protein Coupled Receptors. Proteins 2004, 57, 51.Google Scholar
Vaidehi, N.; Floriano, W. B.; Trabanino, R.; Hall, S. E.; Freddolino, P.; Choi, E. J.; Zamanakos, G.; Goddard, W. A.Prediction of structure and function of G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12627.Google Scholar
Floriano, W. B.; Vaidehi, N.; Goddard, W. A.; Singer, M. S.; Shepherd, G. M.Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10712.Google Scholar
Li, Y.; Goddard, W. A.Prediction of the Structure of G-Protein Coupled Receptor with Application for Drug Design. Pac. Symp. Biocomput. 2008, 13, 344.Google Scholar
Kontoyianni, M.; DeWeese, C.; Penzotti, J. E.; Lybrand, T. P.Three-Dimensional Models for Agonist and Antagonist Complexes with β2 Agrenergic Receptor. J. Med. Chem. 1996, 4406.Google Scholar
Xhaard, H.; Rantanen, V. V.; Nyrönen, T.; Johnson, M. S.Molecular Evolution of Adrenoceptors and Dopamine Receptors: Implications for the Binding of Catecholamines. J. Med. Chem. 2006, 49, 1706.Google Scholar
Trumpp-Kallmeyer, S.; Hoflack, J.; Bruinvels, A.; Hibert, M.Modeling of G-Protein-Coupled Receptors: Application to Dopamine, Adrenaline, Serotonin, Acetylcholine, and Mammalian Opsin Receptors. J. Med. Chem. 1992, 35, 3448.Google Scholar
Bissantz, C.; Bernard, P.; Hibert, M.; Rognan, D.Protein-Based Virtual Screening of Chemical Databases. II. Are Homology Models of G-Protein Coupled Receptors Suitable Targets?Proteins 2003, 50, 5.Google Scholar
Cavasotto, C. N.; Orry, A. J. W.; Murgolo, N. J.; Czarniecki, M. F.; Kocsi, S. A.; Hawes, B. E.; O'Neill, K. A.; Hine, H.; Burton, M. S.; Voigt, J. H.; Abagyan, R. A.; Bayne, M. L.; Monsma, F. J.Discovery of Novel Chemotypes to a G-Protein-Coupled Receptor through Ligand-Steered Homology Modeling and Structure-Based Virtual Screening. J. Med. Chem. 2008, 51, 581.Google Scholar
Kiss, R.; Kiss, B.; Könczöl, A.; Szalai, F.; Jelinek, I.; László, V.; Noszál, B.; Falus, A.; Keserũ, G. M.Discovery of Novel Human Histamine H4 Receptor Ligands by Large-Scale Structure-Based Virtual Screening. J. Med. Chem. 2008, 51, 3145.Google Scholar
Cavasotto, C. N.; Orry, A. J. W.; Abagyan, R. A.Structure-Based Identification of Binding Sites, Native Ligands and Potential Inhibitors for G-Protein Coupled Receptors. Proteins 2008, 51, 423.Google Scholar
Varady, J.; Wu, X.; Fang, X.; Min, J.; Hu, Z.; Levant, B.; Wang, S.Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Screening Approach. J. Med. Chem. 2003, 46, 4377.Google Scholar
Kellenberger, E.; Springael, J. Y.; Parmentier, M.; Hachet-Haas, M.; Galzi, J. L.; Rognan, D.Identification of Nonpeptide CCR5 Receptor Agonists by Structure-based Virtual Screening. J. Med. Chem. 2007, 50, 1294.Google Scholar
Topiol, S.; Sabio, M.Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. Bioorg. Med. Chem. Lett. 2008, 18, 1598.Google Scholar
Crozier, P. S.; Stevens, M. J.; Forrest, L. R.; Woolf, T. B.Molecular Dynamics Simulation of Dark-adapted Rhodopsin in an Explicit Membrane Bilayer: Coupling between Local Retinal and Larger Scale Conformational Change. J. Mol. Biol. 2003, 333, 493.Google Scholar
Spijker, P.; Vaidehi, N.; Freddolino, P. L.; Hilbers, P. A.; Goddard, W. A.Dynamic behavior of fully solvated β2-adrenergic receptor, embedded in the membrane with bound agonist or antagonist. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 4882.Google Scholar
Henin, J.; Maigret, B.; Tarek, M.; Escrieut, C.; Fourmy, D.; Chipot, C.Probing a Model of a GPCR/Ligand Complex in an Explicit Membrane Environment: The Human Cholecystokinin-1 Receptor. Biophys. J. 2006, 90, 1232.Google Scholar
Trent, J. O.; Wang, Z.; Murray, J. L.; Shao, W.; Tamamura, H.; Fuji, N.; Peiper, S. C.Lipid Bilayer Simulations of CXCR4 with Inverse Agonists and Weak Partial Agonists. J. Biol. Chem. 2003, 278, 47136.Google Scholar
Spassov, V.; Yan, L.; Szalma, S.Introducing an Implicit Membrane in Generalized Born/Solvent Accessibility Continuum Solvent Models. J. Phys. Chem. B 2002, 106, 8726.Google Scholar
Im, W.; Feig, M.; Brooks, C. L.An Implicit Membrane Generalized Born Theory for the Study of Structure, Stability, and Interactions of Membrane Proteins. Biophys. J. 2003, 85, 2900.Google Scholar
Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990, 112, 6127.Google Scholar
Gouldson, P. R.; Kidley, N. J.; Bywater, R. P.; Psaroudakis, G.; Brooks, H.D.; Diaz, C.; Shire, D.; Reynolds, C.A.Toward the Active Conformations of Rhodopsin and the β2-Adrenergic Receptor. Proteins 2004, 56, 67.Google Scholar
Niv, M. Y.; Skrabanek, L.; Filizola, M.; Weinstein, H.Modeling activated states of GPCRs: the rhodopsin template. J. Comput. Aided Mol. Des. 2006, 20, 437.Google Scholar
Salom, D.; Lodowski, D. T.; Stenkamp, R. E.; Trong, I.; Golczak, M.; Jastrzebska, B.; Harris, T.; Ballesteros, J. A.; Palczewski, K.Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16123.Google Scholar
Erlanson, D. A.; Wells, J. A.; Braisted, A. C.TETHERING: Fragment-Based Drug Discovery. Annu. Rev. Biophys. Struct. 2004, 33, 199.Google Scholar
Zartler, E. R.; Shapiro, M. J.Fragonomics: fragment-based drug discovery. Curr. Opin. Chem. Biol. 2005, 9, 366.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×