Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T23:00:26.624Z Has data issue: false hasContentIssue false

15 - Purine nucleoside phosphorylases as targets for transition-state analog design

from PART III - APPLICATIONS TO DRUG DISCOVERY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

INTRODUCTION

Among the most powerful enzyme-targeted drugs are those that bear a strong resemblance to the transition state of the chemical reaction undergoing catalysis. This chapter illustrates that experimental determination of enzymatic transition-state structure permits chemically stable analogs to be designed. Mimics of these transition states exhibit binding affinities exceeding those of the substrates by factors of greater than 106. To appreciate this approach to drug design, it is necessary to understand the nature of transition-state formation and how it relates to the strong binding interactions between enzymes and transition-state analogs.

Enzymatic transition-state formation

All chemical reactions proceed through at least one transition state, an unstable structure of maximal energy along the reaction coordinate. Having a lifetime of under 100 fs (10-13 s), the time required for a single bond vibration, the transition state is the most unstable species along a chemical reaction coordinate. In the absence of a catalyst, the probability of transition-state formation is extremely low. Enzymes achieve great catalytic reaction rates by providing appropriately positioned functional groups within the active site, which interact with and distort the substrate toward the transition state by dynamic motions of the complex.

Although the physical means of enzymatic transition-state formation remain the subject of scientific debate, several theories have been proffered. In the early 1940s, Linus Pauling postulated that enzymes bind most optimally not to the normal substrate molecule but rather to the substrate molecule in a strained configuration corresponding to the “activated complex.” He suggested that various attractive forces with the enzyme cause the substrate to adopt the strained configuration, thereby favoring the chemical reaction and accounting for the lowered activation energy of the catalyzed reaction.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 215 - 247
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pauling, L.Molecular architecture and biological reactions. Chem. Eng. News 1946, 24, 1375–1377.Google Scholar
Wolfenden, R.Transition state analogues for enzyme catalysis. Nature 1969, 223, 704–705.Google Scholar
Wolfenden, R.Analog approaches to the structure of the transition state in enzyme reactions. Acc. Chem. Res. 1972, 5, 10–18.Google Scholar
Jencks, W.Binding energy, specificity, and enzymic catalysis: the Circe effect. Adv. Enzymol. Relat. Areas Mol. Biol. 1975, 43, 219–410.Google Scholar
Anderson, V.Ground state destabilization. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, Ltd.; 2001, 1–5.
Shih, I.; Been, M.Catalytic strategies of the hepatitis delta virus ribozymes. Annu. Rev. Biochem. 2002, 71, 887–917.Google Scholar
Wu, N.; Mo, Y.; Gao, J.; Pai, E.Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2017–2022.Google Scholar
Amyes, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P.Formation and stability of a vinyl carbanion at the active site of orotidine 5′-monophosphate decarboxylase: pKa of the C-6 proton of enzyme-bound UMP. J. Am. Chem. Soc. 2008, 130, 1574–1575.Google Scholar
Bruice, T. C.; Lightstone, F. C.Ground state and transition state contributions to the rates of intramolecular and enzymatic reactions. Acc. Chem. Res. 1999, 32, 127–136.Google Scholar
Lightstone, F. C.; Bruice, T. C.Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. Cyclic anhydride formation by substituted glutarates, succinate, and 3,6-endoxo-Δ4-tetrahydrophthalate monophenyl esters. J. Am. Chem. Soc. 1996, 118, 2595–2605.Google Scholar
Antoniou, D.; Basner, J.; Núñez, S.; Schwartz, S.Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem. Rev. 2006, 106, 3170–3187.Google Scholar
Kohen, A.; Cannio, R.; Bartolucci, S.; Klinman, J.Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 1999, 399, 496–499.Google Scholar
Agarwal, P.; Billeter, S.; Rajagopalan, P.; Benkovic, S.; Hammes-Schiffer, S.Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 2794–2799.Google Scholar
Wong, K.; Selzer, T.; Benkovic, S.; Hammes-Schiffer, S.Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6807–6812.Google Scholar
Nunez, S.; Antoniou, D.; Schramm, V. L.; Schwartz, S. D.Promoting vibrations in human purine nucleoside phosphorylase: a molecular dynamics and hybrid quantum mechanical/molecular mechanical study. J. Am. Chem. Soc. 2004, 126, 15720–15729.Google Scholar
Saen-Oon, S.; Ghanem, M.; Schramm, V.; Schwartz, S.Remote mutations and active site dynamics correlate with catalytic properties of purine nucleoside phosphorylase. Biophys. J. 2008, 94(10), 4078–4088.Google Scholar
Lienhard, G.Enzymatic catalysis and transition-state theory. Science 1973, 180, 149–154.Google Scholar
Wolfenden, R.; Kati, W. M.Testing the limits of protein-ligand binding discrimination with transition-state analogue inhibitors. Acc. Chem. Res. 1991, 24, 209–215.Google Scholar
Wolfenden, R.Conformational aspects of inhibitor design: enzyme-substrate interactions in the transition state. Bioorg. Med. Chem. 1999, 7, 647–652.Google Scholar
Schramm, V.Enzymatic transition state theory and transition state analogue design. J. Biol. Chem. 2007, 282, 28297–28300.Google Scholar
Schramm, V.Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 1998, 67, 693–720.Google Scholar
Hammond, G. S.A correlation of reaction rates. J. Am. Chem. Soc. 1955, 77, 334–338.Google Scholar
Jencks, W. In: Catalysis in Chemistry and Enzymology. Dover: New York, 1987, 170–182.
Schramm, V.Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch. Biochem. Biophys. 2005, 433, 13–26.Google Scholar
Cleland, W.Isotope Effects: Determination of enzyme transition state structure. Methods Enzymol. 1995, 249, 341–373.Google Scholar
Parkin, D. W. In: Enzyme Mechanism from Isotope Effects, Cook, P. F.; Ed. Boca Raton: CRC Press; 1991, 269–290.
Rodgers, J.; Femec, D. A.; Schowen, R. L.Isotopic mapping of transition-state structural features associated with enzymic catalysis of methyl transfer. J. Am. Chem. Soc. 1982, 104, 3263–3268.Google Scholar
Sunhel, J.; Schowen, R. In: Enzyme Mechanism from Isotope Effects, Cook, P. F.; Ed. Boca Raton: CRC Press; 1991, 3–36.
Huskey, W. In: Enzyme Mechanism from Isotope Effects, Cook, P. F.; Ed. Boca Raton: CRC Press; 1991, 37–72.
Berti, P. J.; Tanaka, K. S. E. Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer. Adv. Phys. Org. Chem. 2002, 37, 239–314.Google Scholar
Rose, I.The isotope trapping method: desorption rates of productive e.s complexes. Methods Enzymol. 1980, 64, 47–59.Google Scholar
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; G. Liu, A. L.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Revision A.11.2 ed.; Gaussian, Inc.: Pittsburgh, PA, 2001.
Saunders, M.; Laidig, K. E.; Wolfsberg, M.Theoretical calculation of equilibrium isotope effects using ab initio force constants: application to NMR isotope perturbation studies. J. Am. Chem. Soc. 1989, 111, 8989–8994.Google Scholar
Anisimov, V.; Paneth, P.ISOEFF98: a program for studies of isotope effects using hessian modifications. J. Math. Chem. 1999, 26, 75–86.Google Scholar
Melander, L.; Saunders, W. H.Reaction Rates of Isotopic Molecules. New York, NY: Wiley & Sons; 1980.
Bigeleisen, J.The relative reaction velocities of isotopic molecules. J. Chem. Phys. 1949, 17, 675–678.Google Scholar
Bigeleisen, J.; Wolsberg, M.Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1958, 1, 15–76.Google Scholar
Streitwieser, A.; Jagow, R. H.; Fahey, R. C.; Suzuki, S.Kinetic isotope effects in the acetolyses of deuterated cyclopentyl tosylates. J. Am. Chem. Soc. 1958, 80, 2326–2332.Google Scholar
Northrop, D.The expression of isotope effects on enzyme-catalyzed reactions. Annu. Rev. Biochem. 1981, 50, 103–131.Google Scholar
Birck, M.; Schramm, V.Binding causes the remote [5′-3H]thymidine kinetic isotope effect in human thymidine phosphorylase. J. Am. Chem. Soc. 2004, 126, 6882–6883.Google Scholar
Murkin, A. S.; Birck, M. R.; Rinaldo-Matthis, A.; Shi, W. X.; Taylor, E. A.; Almo, S. C.; Schramm, V. L.Neighboring group participation in the transition state of human purine nucleoside phosphorylase. Biochemistry 2007, 46, 5038–5049.Google Scholar
Ruszczycky, M.; Anderson, V.Interpretation of V/K isotope effects for enzymatic reactions exhibiting multiple isotopically sensitive steps. J. Theor. Biol. 2006, 243, 328–342.Google Scholar
Giblett, E. R.; Ammann, A. J.; Wara, D. W.; Sandman, R.; Diamond, L. K.Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975, 1, 1010–1013.Google Scholar
Markert, M.; Finkel, B.; McLaughlin, T.; Watson, T.; Collard, H.; McMahon, C.; Andrews, L.; Barrett, M.; Ward, F.Mutations in purine nucleoside phosphorylase deficiency. Hum. Mutat. 1997, 9, 118–121.Google Scholar
Markert, M.Purine nucleoside phosphorylase deficiency. Immunodef. Rev. 1991, 3, 45–81.Google Scholar
Oliver, F.; Collins, M.; López-Rivas, A.dNTP pools imbalance as a signal to initiate apoptosis. Experientia 1996, 52, 995–1000.Google Scholar
Zoltewicz, J.; Clark, D.; Sharpless, T.; Grahe, G.Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 1970, 92, 1741–1749.Google Scholar
McCann, J.; Berti, P.Transition state analysis of acid-catalyzed dAMP hydrolysis. J. Am. Chem. Soc. 2007, 129, 7055–7064.Google Scholar
Krenitsky, T.Purine nucleoside phosphorylase: kinetics, mechanism, and specificity. Mol. Pharmacol. 1967, 3, 526–536.Google Scholar
Kim, B.; Cha, S.; Parks, R. J.Purine nucleoside phosphorylase from human erythroyctes. II. Kinetic analysis and substrate-binding studies. J. Biol. Chem. 1968, 243, 1771–1776.Google Scholar
Lewis, A.; Lowy, B. Human erythrocyte purine nucleoside phosphorylase: molecular weight and physical properties: a Theorell-Chance catalytic mechanism. J. Biol. Chem. 1979, 254, 9927–9932.Google Scholar
Lewis, A.; Glantz, M.Bovine brain purine-nucleoside phosphorylase purification, characterization, and catalytic mechanism. Biochemistry 1976, 15, 4451–4457.Google Scholar
Porter, D.Purine nucleoside phosphorylase: kinetic mechanism of the enzyme from calf spleen. J. Biol. Chem. 1992, 267, 7342–7351.Google Scholar
Carlson, J.; Fischer, A.Thyroid purine nucleoside phosphorylase. II. Kinetic model by alternate substrate and inhibition studies. Biochim. Biophys. Acta 1979, 566, 259–265.Google Scholar
Kline, P.; Schramm, V.Purine nucleoside phosphorylase: catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 1993, 32, 13212–13219.Google Scholar
Erion, M. D.; Stoeckler, J. D.; Guida, W. C.; Walter, R. L.; Ealick, S. E.Purine nucleoside phosphorylase. 2. Catalytic mechanism. Biochemistry 1997, 36, 11735–11748.Google Scholar
Ghanem, M.; Saen-Oon, S.; Zhadin, N.; Wing, C.; Cahill, S.; Schwartz, S.; Callender, R.; Schramm, V.Tryptophan-free human PNP reveals catalytic site interactions. Biochemistry 2008, 47, 3202–3215.Google Scholar
Kline, P.; Schramm, V.Purine nucleoside phosphorylase: inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity. Biochemistry 1992, 31, 5964–5973.Google Scholar
Lewandowicz, A.; Schramm, V.Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry 2004, 43, 1458–1468.Google Scholar
Rising, K. A.; Schramm, V. L.Transition state analysis of NAD+ hydrolysis by the cholera toxin catalytic subunit. J. Am. Chem. Soc. 1997, 119, 27–37.Google Scholar
Stein, R.; Cordes, E.Kinetic alpha-deuterium isotope effects for Escherichia coli purine nucleoside phosphorylase-catalyzed phosphorolysis of adenosine and inosine. J. Biol. Chem. 1981, 256, 767–772.Google Scholar
Lehikoinen, P.; Sinnott, M.; Krenitsky, T.Investigation of alpha-deuterium kinetic isotope effects on the purine nucleoside phosphorylase reaction by the equilibrium-perturbation technique. Biochem. J. 1989, 257, 355–359.Google Scholar
Parks, R. E.; Agarwal, R. P. In: The Enzymes, Boyer, P. D.; Ed. New York, NY: Academic Press; 1972, Vol. 7, 483–514.
Schramm, V.; Shi, W.Atomic motion in enzymatic reaction coordinates. Curr. Opin. Struct. Biol. 2001, 11, 657–665.Google Scholar
Birck, M.; Schramm, V.Nucleophilic participation in the transition state for human thymidine phosphorylase. J. Am. Chem. Soc. 2004, 126, 2447–2453.Google Scholar
Kline, P.; Schramm, V.Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase. Biochemistry 1995, 34, 1153–1162.Google Scholar
Horenstein, B.; Parkin, D.; Estupiñán, B.; Schramm, V.Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata. Biochemistry 1991, 30, 10788–10795.Google Scholar
Scheuring, J.; Berti, P.; Schramm, V.Transition-state structure for the ADP-ribosylation of recombinant gialpha1 subunits by pertussis toxin. Biochemistry 1998, 37, 2748–2758.Google Scholar
Scheuring, J.; Schramm, V.Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin. Biochemistry 1997, 36, 4526–4534.Google Scholar
Scheuring, J.; Schramm, V.Pertussis toxin: transition state analysis for ADP-ribosylation of G-protein peptide alphai3C20. Biochemistry 1997, 36, 8215–8223.Google Scholar
Berti, P. J.; Blanke, S. R.; Schramm, V. L.Transition state structure for the hydrolysis of NAD+ catalyzed by diphtheria toxin. J. Am. Chem. Soc. 1997, 119, 12079–12088.Google Scholar
Parkin, D. W.; Leung, H. B.; Schramm, V. L.Synthesis of nucleotides with specific radiolabels in ribose: primary 14C and secondary 3H kinetic isotope effects on acid-catalyzed glycosidic bond hydrolysis of AMP, dAMP, and inosine. J. Biol. Chem. 1984, 259, 9411–9417.Google Scholar
Parkin, D. W.; Schramm, V. L.Effects of allosteric activation on the primary and secondary kinetic isotope effects for three AMP nucleosidases. J. Biol. Chem. 1984, 259, 9418–9425.Google Scholar
Parkin, D.; Schramm, V.Catalytic and allosteric mechanism of amp nucleosidase from primary, beta-secondary, and multiple heavy atom kinetic isotope effects. Biochemistry 1987, 26, 913–920.Google Scholar
Parikh, S.; Schramm, V.Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin. Biochemistry 2004, 43, 1204–1212.Google Scholar
Parkin, D.; Mentch, F.; Banks, G.; Horenstein, B.; Schramm, V.Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects. Biochemistry 1991, 30, 4586–4594.Google Scholar
Hunt, C.; Gillani, N.; Farone, A.; Rezaei, M.; Kline, P.Kinetic isotope effects of nucleoside hydrolase from Escherichia coli. Biochim. Biophys. Acta 2005, 1751, 140–149.Google Scholar
Singh, V.; Schramm, V.Transition-state structure of human 5′-methylthioadenosine phosphorylase. J. Am. Chem. Soc. 2006, 128, 14691–14696.Google Scholar
Singh, V.; Luo, M.; Brown, R.; Norris, G.; Schramm, V.Transition-state structure of Neisseria meningitides 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J. Am. Chem. Soc. 2007, 129, 13831–13833.Google Scholar
Chen, X. Y.; Berti, P. J.; Schramm, V. L.Ricin A-chain: kinetic isotope effects and transition state structure with stem-loop RNA. J. Am. Chem. Soc. 2000, 122, 1609–1617.Google Scholar
Chen, X. Y.; Berti, P. J.; Schramm, V. L.Transition-state analysis for depurination of DNA by ricin A-chain. J. Am. Chem. Soc. 2000, 122, 6527–6534.Google Scholar
Werner, R.; Stivers, J.Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate. Biochemistry 2000, 39, 14054–14064.Google Scholar
Singh, V.; Lee, J.; Núñez, S.; Howell, P.; Schramm, V.Transition state structure of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Biochemistry 2005, 44, 11647–11659.Google Scholar
Singh, V.; Schramm, V.Transition-state analysis of S. pneumoniae 5′-methylthioadenosine nucleosidase. J. Am. Chem. Soc. 2007, 129, 2783–2795.Google Scholar
Munns, A.; Tollin, P.The crystal and molecular structure of inosine. Acta Crystallogr. B 1970, 26, 1101–1113.Google Scholar
Miles, R. W.; Tyler, P. C.; Furneaux, R. H.; Bagdassarian, C. K.; Schramm, V. L.One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry 1998, 37, 8615–8621.Google Scholar
Sauve, A.; Cahill, S.; Zech, S.; Basso, L.; Lewandowicz, A.; Santos, D.; Grubmeyer, C.; Evans, G.; Furneaux, R.; Tyler, P.; McDermott, A.; Girvin, M.; Schramm, V.Ionic states of substrates and transition state analogues at the catalytic sites of N-ribosyltransferases. Biochemistry 2003, 42, 5694–5705.Google Scholar
Schramm, V. L.Development of transition state analogues of purine nucleoside phosphorylase as anti-T-cell agents. Biochim. Biophys. Acta 2002, 1587, 107–117.Google Scholar
Bzowska, A.; Kulikowska, E.; Darzynkiewicz, E.; Shugar, D.Purine nucleoside phosphorylase. structure-activity relationships for substrate and inhibitor properties of N-1-, N-7-, and C-8-substituted analogues; differentiation of mammalian and bacterial enzymes with N-1-methylinosine and guanosine. J. Biol. Chem. 1988, 263, 9212–9217.Google Scholar
Bagdassarian, C. K.; Schramm, V. L.; Schwartz, S. D.Molecular electrostatic potential analysis for enzymatic substrates, competitive inhibitors, and transition-state inhibitors. J. Am. Chem. Soc. 1996, 118, 8825–8836.Google Scholar
Braunheim, B.; Miles, R.; Schramm, V.; Schwartz, S.Prediction of inhibitor binding free energies by quantum neural networks: nucleoside analogues binding to trypanosomal nucleoside hydrolase. Biochemistry 1999, 38, 16076–16083.Google Scholar
Evans, G. B.; Furneaux, R. H.; Gainsford, G. J.; Schramm, V. L.; Tyler, P. C.Synthesis of transition state analogue inhibitors for purine nucleoside phosphorylase and N-riboside hydrolases. Tetrahedron 2000, 56, 3053–3062.Google Scholar
Evans, G.; Furneaux, R.; Hutchison, T.; Kezar, H.; Morris, P. J.; Schramm, V.; Tyler, P.Addition of lithiated 9-deazapurine derivatives to a carbohydrate cyclic imine: convergent synthesis of the aza-C-nucleoside Immucillins. J. Org. Chem. 2001, 66, 5723–5730.Google Scholar
Ealick, S.; Rule, S.; Carter, D.; Greenhough, T.; Babu, Y.; Cook, W.; Habash, J.; Helliwell, J.; Stoeckler, J.; Parks, R. J.Three-dimensional structure of human erythrocytic purine nucleoside phosphorylase at 3.2 Å resolution. J. Biol. Chem. 1990, 265, 1812–1820.Google Scholar
Mao, C.; Cook, W. J.; Zhou, M.; Federov, A. A.; Almo, S. C.; Ealick, S. E.Calf spleen purine nucleoside phosphorylase complexed with substrates and substrate analogues. Biochemistry 1998, 37, 7135–7146.Google Scholar
Wang, F.; Miles, R. W.; Kicska, G.; Nieves, E.; Schramm, V. L.; Angeletti, R. H.Immucillin-H binding to purine nucleoside phosphorylase reduces dynamic solvent exchange. Protein Sci. 2000, 9, 1660–1668.Google Scholar
Fedorov, A.; Shi, W.; Kicska, G.; Fedorov, E.; Tyler, P.; Furneaux, R.; Hanson, J.; Gainsford, G.; Larese, J.; Schramm, V.; Almo, S.Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry 2001, 40, 853–860.Google Scholar
Shi, W.; Li, C.; Tyler, P.; Furneaux, R.; Cahill, S.; Girvin, M.; Grubmeyer, C.; Schramm, V.; Almo, S.The 2.0 Å structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. Biochemistry 1999, 38, 9872–9880.Google Scholar
Shi, W.; Li, C.; Tyler, P.; Furneaux, R.; Grubmeyer, C.; Schramm, V.; Almo, S.The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat. Struct. Biol. 1999, 6, 588–593.Google Scholar
Héroux, A.; White, E.; Ross, L.; Davis, R.; Borhani, D.Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg(2+) ions bound: insights into the catalytic mechanism. Biochemistry 1999, 38, 14495–14506.Google Scholar
Tao, W.; Grubmeyer, C.; Blanchard, J.Transition state structure of Salmonella typhimurium orotate phosphoribosyltransferase. Biochemistry 1996, 35, 14–21.Google Scholar
Sauve, A.; Wolberger, C.; Schramm, V.; Boeke, J.The biochemistry of sirtuins. Annu. Rev. Biochem. 2006, 75, 435–465.Google Scholar
Bianchet, M.; Seiple, L.; Jiang, Y.; Ichikawa, Y.; Amzel, L.; Stivers, J.Electrostatic guidance of glycosyl cation migration along the reaction coordinate of uracil DNA glycosylase. Biochemistry 2003, 42, 12455–12460.Google Scholar
Vocadlo, D.; Davies, G.; Laine, R.; Withers, S.Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 2001, 412, 835–838.Google Scholar
Kicska, G. A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Shi, W. X.; Fedorov, A.; Lewandowicz, A.; Cahill, S. M.; Almo, S. C.; Schramm, V. L.Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase. Biochemistry 2002, 41, 14489–14498.Google Scholar
Evans, G.; Furneaux, R.; Lewandowicz, A.; Schramm, V.; Tyler, P.Exploring structure-activity relationships of transition state analogues of human purine nucleoside phosphorylase. J. Med. Chem. 2003, 46, 3412–3423.Google Scholar
Lewandowicz, A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Schramm, V. L. Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J. Biol. Chem. 2003, 278, 31465–31468.Google Scholar
Jiang, Y.; Ichikawa, Y.; Stivers, J.Inhibition of uracil DNA glycosylase by an oxacarbenium ion mimic. Biochemistry 2002, 41, 7116–7124.Google Scholar
Berti, P.; McCann, J.Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer. Chem. Rev. 2006, 106, 506–555.Google Scholar
Evans, G.; Furneaux, R.; Lewandowicz, A.; Schramm, V.; Tyler, P.Synthesis of second-generation transition state analogues of human purine nucleoside phosphorylase. J. Med. Chem. 2003, 46, 5271–5276.Google Scholar
Evans, G.; Furneaux, R.; Tyler, P.; Schramm, V.Synthesis of a transition state analogue inhibitor of purine nucleoside phosphorylase via the mannich reaction. Org. Lett. 2003, 5, 3639–3640.Google Scholar
Furneaux, R.; Tyler, P.Improved syntheses of 3H,5H-pyrrolo[3,2-d]pyrimidines. J. Org. Chem. 1999, 64, 8411–8412.Google Scholar
Lewandowicz, A.; Shi, W. X.; Evans, G. B.; Tyler, P. C.; Furneaux, R. H.; Basso, L. A.; Santos, D. S.; Almo, S. C.; Schramm, V. L.Over-the-barrier transition state analogues and crystal structure with mycobacterium tuberculosis purine nucleoside phosphorylase. Biochemistry 2003, 42, 6057–6066.Google Scholar
Taylor Ringia, E. A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Murkin, A. S.; Schramm, V. L.Transition state analogue discrimination by related purine nucleoside phosphorylases. J. Am. Chem. Soc. 2006, 128, 7126–7127.Google Scholar
Clinch, K.; Evans, G.; Fleet, G.; Furneaux, R.; Johnson, S.; Lenz, D.; Mee, S.; Rands, P.; Schramm, V.; Taylor Ringia, E.; Tyler, P.Syntheses and bio-activities of the L-enantiomers of two potent transition state analogue inhibitors of purine nucleoside phosphorylases. Org. Biomol. Chem. 2006, 4, 1131–1139.Google Scholar
Rinaldo-Matthis, A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, V. L-enantiomers of transition state analogue inhibitors bound to human purine nucleoside phosphorylase. J. Am. Chem. Soc. 2008, 130, 842–844.Google Scholar
Lewandowicz, A.; Ringia, E.; Ting, L.; Kim, K.; Tyler, P.; Evans, G.; Zubkova, O.; Mee, S.; Painter, G.; Lenz, D.; Furneaux, R.; Schramm, V.Energetic mapping of transition state analogue interactions with human and Plasmodium falciparum purine nucleoside phosphorylases. J. Biol. Chem. 2005, 280, 30320–30328.Google Scholar
Nunez, S.; Wing, C.; Antoniou, D.; Schramm, V. L.; Schwartz, S. D.Insight into catalytically relevant correlated motions in human purine nucleoside phosphorylase. J. Phys. Chem. A 2006, 110, 463–472.Google Scholar
Murkin, A.; Tyler, P.; Schramm, V.Transition-state interactions revealed in purine nucleoside phosphorylase by binding isotope effects. J. Am. Chem. Soc. 2008, 130, 2166–2167.Google Scholar
Kicska, G.; Long, L.; Hörig, H.; Fairchild, C.; Tyler, P.; Furneaux, R.; Schramm, V.; Kaufman, H.Immucillin H, a powerful transition-state analog inhibitor of purine nucleoside phosphorylase, selectively inhibits human T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 4593–4598.Google Scholar
Bantia, S.; Miller, P. J.; Parker, C. D.; Ananth, S. L.; Horn, L. L.; Kilpatrick, J. M.; Morris, P. E.; Hutchison, T. L.; Montgomery, J. A.; Sandhu, J. S.Purine nucleoside phosphorylase inhibitor BCX-1777 (Immucillin-H) – a novel potent and orally active immunosuppressive agent. Int. Immunopharmacol. 2001, 1, 1199–1210.Google Scholar
Galmarini, C.Drug evaluation: forodesine – PNP inhibitor for the treatment of leukemia, lymphoma and solid tumor. IDrugs 2006, 9, 712–722.Google Scholar
Larson, R. A.Three new drugs for acute lymphoblastic leukemia: nelarabine, clofarabine, and forodesine. Semin. Oncol. 2007, 34, S13–20.Google Scholar
Korycka, A.; Blonski, J. Z.; Robak, T.Forodesine (BCX-1777, Immucillin H) – a new purine nucleoside analogue: mechanism of action and potential clinical application. Mini Rev. Med. Chem. 2007, 7, 976–983.Google Scholar
Gore, L.; Stelljes, M.; Quinones, R.Forodesine treatment and post-transplant graft-versus-host disease in two patients with acute leukemia: facilitation of graft-versus-leukemia effect?Semin. Oncol. 2007, 34, S35–39.Google Scholar
Gandhi, V.; Balakrishnan, K.Pharmacology and mechanism of action of forodesine, a T-cell targeted agent. Semin. Oncology 2007, 34, S8–S12.Google Scholar
Furman, R. R.; Hoelzer, D.Purine nucleoside phosphorylase inhibition as a novel therapeutic approach for B-cell lymphoid malignancies. Semin. Oncol. 2007, 34, S29–S34.Google Scholar
Duvic, M.; Foss, F. M.Mycosis fungoides: pathophysiology and emerging therapies. Semin. Oncol. 2007, 34, S21–28.Google Scholar
Duvic, M.Systemic monotherapy vs combination therapy for ctcl: rationale and future strategies. Oncology 2007, 21, 33–40.Google Scholar
,BioCryst Pharmaceuticals Inc., Forodesine, October 7, 2009, http://www.biocryst.com/forodesine.
Semeraro, T.; Lossani, A.; Botta, M.; Ghiron, C.; Alvarez, R.; Manetti, F.; Mugnaini, C.; Valensin, S.; Focher, F.; Corelli, F.Simplified analogues of Immucillin-G retain potent human purine nucleoside phosphorylase inhibitory activity. J. Med. Chem. 2006, 49, 6037–6045.Google Scholar
Taylor, E.; Clinch, K.; Kelly, P.; Li, L.; Evans, G.; Tyler, P.; Schramm, V.Acyclic ribooxacarbenium ion mimics as transition state analogues of human and malarial purine nucleoside phosphorylases. J. Am. Chem. Soc. 2007, 129, 6984–6985.Google Scholar
Acronym for 2′-Deoxy-2′-Amino-Tetritol-N-(9-Methylene)-ImmH but the IUPAC name is 9-deaza-9-[[(2R,3S)-1,3,4-trihydroxybutan-2-ylamino]methyl]hypoxanthine. This acronym first appeared in Taylor et al., but as an oversight, was never defined; DATMe-ImmH is compound 19 in that manuscript.
Taylor, E. A.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K. Z.; Cassera, M. B.; Almo, S. C.; Schramm, V. L.Anopheles gambiae purine nucleoside phosphorylase: catalysis, structure, and inhibition. Biochemistry 2007, 46, 12405–12415.Google Scholar
Agarwal, R.; Spector, T.; Parks, R. J.Tight-binding inhibitors. IV. Inhibition of adenosine deaminases by various inhibitors. Biochem. Pharmacol. 1977, 26, 359–367.Google Scholar
Tokutake, N.; Hiratake, J.; Katoh, M.; Irie, T.; Kato, H.; Oda, J.Design, synthesis and evaluation of transition-state analogue inhibitors of Escherichia coli gamma-glutamylcysteine synthetase. Bioorg. Med. Chem. 1998, 6, 1935–1953.Google Scholar
von Itzstein, M.; Wu, W.; Kok, G.; Pegg, M.; Dyason, J.; Jin, B.; Phan, T.; Smythe, M.; White, H.; Oliver, S.Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418–423.Google Scholar
Bolin, J.; Filman, D.; Matthews, D.; Hamlin, R.; Kraut, J.Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. I. General features and binding of methotrexate. J. Biol. Chem. 1982, 257, 13650–13662.Google Scholar
Kimble, E.; Hadala, J.; Ludewig, R.; Peters, P.; Greenberg, G.; Xiao, G.; Guida, W.; McQuire, L.; Simon, P.The biochemical and pharmacological activity of 9-benzyl-9-deazaguanine, a potent purine nucleoside phosphorylase (PNP) inhibitor. Inflamm. Res. 1995, 44(suppl. 2), S181–S182.Google Scholar
Perzborn, E.; Strassburger, J.; Wilmen, A.; Pohlmann, J.; Roehrig, S.; Schlemmer, K. H.; Straub, A.In vitro and in vivo studies of the novel antithrombotic agent bay 59–7939 – an oral, direct factor Xa inhibitor. J. Thromb. Haemost. 2005, 3, 514–521.Google Scholar
Taylor Ringia, E. A.; Schramm, V. L.Transition states and inhibitors of the purine nucleoside phosphorylase family. Curr. Top. Med. Chem. 2005, 5, 1237–1258.Google Scholar
Kicska, G. A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Kim, K.; Schramm, V. L.Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. J. Biol. Chem. 2002, 277, 3219–3225.Google Scholar
Barsacchi, D.; Cappiello, M.; Tozzi, M.; Del Corso, A.; Peccatori, M.; Camici, M.; Ipata, P.; Mura, U.Purine nucleoside phosphorylase from bovine lens: purification and properties. Biochim. Biophys. Acta 1992, 1160, 163–170.Google Scholar
Stoeckler, J. D.; Poirot, A. F.; Smith, R. M.; Parks, R. E.; Ealick, S. E.; Takabayashi, K.; Erion, M. D.Purine nucleoside phosphorylase. 3. Reversal of purine base specificity by site-directed mutagenesis. Biochemistry 1997, 36, 11749–11756.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×