Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-09T11:25:57.365Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2012

Peter Simmons
Affiliation:
Newcastle University
David Young
Affiliation:
University of Melbourne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, D. G. and Witter, M. P. (1995). Hippocampal formation. In The Rat Nervous System (ed. Paxinos, G.), pp. 443–493. London: Academic Press.Google Scholar
Anstey, M. L., Rogers, S. M., Ott, S. R., Burrows, M. and Simpson, S. J. (2008). Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323, 627–630.CrossRefGoogle Scholar
Antonsen, B. and Edwards, D. (2007). Mechanisms of serotonergic facilitation of a command neuron. J. Neurophysiol. 98, 3494–3504.CrossRefGoogle ScholarPubMed
Aronov, D., Andalman, A. S. and Fee, M. S. (2008). A specialized forebrain circuit for vocal babbling in the juvenile song bird. Science 320, 630–634.CrossRefGoogle Scholar
Bacon, J. and Möhl, B. (1983a). The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. 1. Its activity in straight flight. J. Comp. Physiol. 150, 439–452.CrossRefGoogle Scholar
Bacon, J. and Möhl, B. (1983b). The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. 2. Directional sensitivity and role in flight stabilisation. J. Comp. Physiol. 150, 453–465.CrossRefGoogle Scholar
Bacon, J. and Tyrer, N. M. (1978). The tritocerebral commissure giant (TCG): a bimodal interneurone in the locust, Schistocerca gregaria. J. Comp. Physiol. 126, 317–325.CrossRefGoogle Scholar
Barlow, R. B., Hitt, J. M. and Dodge, J. A. (2001). Limulus vision in the marine environment. Biol. Bull. 200, 169–176.CrossRefGoogle Scholar
Barnett, P. D., Nordström, K. and O'Carroll, D. C. (2007). Retinotopic organization of small-field-target-detecting neurons in the insect visual system. Curr. Biol. 17, 569–578.CrossRefGoogle ScholarPubMed
Bartelmez, G. W. (1915). Mauthner's cell and the nucleus motorius tegmenti. J. Comp. Neurol. 25, 87–128.CrossRefGoogle Scholar
Bentley, D. R. and Hoy, R. R. (1972). Genetic control of the neuronal network generating cricket (Teleogryllus) song patterns. Anim. Behav. 20, 478–492.CrossRefGoogle ScholarPubMed
Bicker, G. and Pearson, K. G. (1983). Initiation of flight by stimulation of a single identified wind sensitive neurone (TCG) in the locust. J. Exp. Biol. 104, 289–294.Google Scholar
Bitterman, M. E., Menzel, R., Fietz, A. and Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97, 107–119.CrossRefGoogle Scholar
Bliss, T. V. P. and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.CrossRefGoogle ScholarPubMed
Bodenhamer, R., Pollak, G. D. and Marsh, D. S. (1979). Coding of fine frequency information by echoranging neurons in the inferior colliculus of the Mexican free-tailed bat. Brain Res. 171, 530–535.CrossRefGoogle ScholarPubMed
Boice, R. (1977). Burrows of wild and albino rats: effects of domestication, outdoor raising, age, experience, and maternal state. J. Comp. Physiol. Psychol. 91, 649–661.CrossRefGoogle ScholarPubMed
Bolhuis, J. and Verhulst, S. (2008). Tinbergen's Legacy: Function and Mechanism in Behavioural Biology. Cambridge: Cambridge University Press.Google Scholar
Borst, A. (2007). Correlation versus gradient type motion detectors: the pros and cons. Phil. Trans. Royal Soc. B 362, 369–374.CrossRefGoogle ScholarPubMed
Borst, A. and Haag, J. (2002). Neural networks in the cockpit of the fly. J. Comp. Physiol. 188, 419–437.Google Scholar
Borst, A. and Haag, J. (2007). Optic flow processing in the cockpit of the fly. In Invertebrate Neurobiology (ed. North, G. and Greenspan, R. J.), pp. 101–122. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Bottjer, S. W., Miesner, E. A. and Arnold, A. P. (1984). Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224, 901–903.CrossRefGoogle ScholarPubMed
Brainard, M. S. and Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J. Neurosci. 13, 4589–4608.CrossRefGoogle ScholarPubMed
Brun, V. H., Otnæss, M. K., Molden, S., et al. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246.CrossRefGoogle ScholarPubMed
Bruns, V. and Schmieszek, E. (1980). Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hearing Res. 3, 27–43.CrossRefGoogle ScholarPubMed
Bullock, T. H. and Horridge, G. A. (1965). Structure and Function in the Nervous Systems of Invertebrates. San Francisco, CA: W.H. Freeman.Google Scholar
Burrows, M. (1975). Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. J. Exp. Biol. 62, 189–219.Google ScholarPubMed
Burrows, M. (1989). Processing of mechanosensory signals in local reflex pathways of the locust. J. Exp. Biol. 146, 209–227.Google ScholarPubMed
Burrows, M. (1992). Reliability and effectiveness of transmission from exteroceptive sensory neurons to spiking local interneurons in the locust. J. Neurosci. 12, 1477–l499.CrossRefGoogle ScholarPubMed
Burrows, M. (1996). The Neurobiology of an Insect Brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
Burrows, M. and Newland, P. L. (1993). Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. J. Comp. Neurol. 329, 412–426.CrossRefGoogle ScholarPubMed
Burrows, M. and Siegler, M. V. S. (1978). Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust. J. Physiol. (London) 285, 231–255.CrossRefGoogle ScholarPubMed
Burrows, M. and Siegler, M. V. S. (1985). The organization of receptive fields of spiking local interneurons in the locust with inputs from hair afferents. J. Neurophysiol. 53, 1147–1157.CrossRefGoogle ScholarPubMed
Burton, B. G., Tatler, B. W. and Laughlin, S. B. (2001). Variations in photoreceptor response dynamics across the fly retina. J. Neurophysiol. 86, 950–960.CrossRefGoogle ScholarPubMed
Camhi, J. M. and Tom, W. (1978). The escape system of the cockroach Periplaneta americana. I. The turning response to wind puffs. J. Comp. Physiol. 128, 193–201.CrossRefGoogle Scholar
Canfield, J. G. and Rose, G. J. (1993). Activation of Mauthner neurons during prey capture. J. Comp. Physiol. A 172, 611–618.CrossRefGoogle Scholar
Carew, T. J. (2001). Behavioral Neurobiology: The Cellular Organization of Natural Behavior. Sunderland, MA: Sinauer Associates.Google Scholar
Carr, C. E. and Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246.CrossRefGoogle ScholarPubMed
Catania, K. C. (1999). A nose that looks like a hand and acts like an eye: the unusual mechanosensory system of the star-nosed mole. J. Comp. Physiol. A 185, 367–372.CrossRefGoogle Scholar
Catania, K. C. and Kaas, J. H. (1996). The unusual nose and brain of the star-nosed mole. BioScience 46, 578–586.CrossRefGoogle Scholar
Catania, K. C. and Kaas, J. H. (1997). Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation. J. Comp. Neurol. 387, 215–233.3.0.CO;2-3>CrossRefGoogle Scholar
Catania, K. C. and Remple, F. E. (2005). Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 442, 519–522.CrossRefGoogle Scholar
Catchpole, C. K. and Slater, P. J. B. (2008). Bird Song: Biological Themes and Variations. 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Clemens, S. and Katz, P. S. (2001). Identified serotonergic neurons in the Tritonia swim CPG activate both ionotropic and metabotropic receptors. J. Neurophysiol. 85, 476–479.CrossRefGoogle ScholarPubMed
Clyne, J. D. and Miesenböck, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363.CrossRefGoogle Scholar
Collett, T. S. (2007). Insect navigation: visual panoramas and the sky compass. Curr. Biol. 18, R1058–R1060.CrossRefGoogle Scholar
Collett, T. S. and Land, M. F. (1975). Visual control of flight behaviour in the hoverfly Syritta pipiens, L. J. Comp. Physiol. 99, 1–66.CrossRefGoogle Scholar
Comer, C. (1985). Analyzing cockroach escape behavior with lesions of individual giant interneurons. Brain Res. 335, 342–346.CrossRefGoogle ScholarPubMed
Comer, C. M. and Dowd, J. P. (1993). Multisensory processing for movement: antennal and cercal mediation of escape turning in the cockroach. In Biological Neural Networks in Invertebrate Neuroethology and Robotics (ed. Beer, R. D., Ritzmann, R. E. and McKenna, T.), pp. 89–112. Boston, MA: Academic Press.Google Scholar
Dagan, D. and Camhi, J. M. (1979). Responses to wind recorded from the cercal nerve of the cockroach Periplaneta americana. II. Directional selectivity of the sensory nerves innervating single columns of filiform hairs. J. Comp. Physiol. A 133, 103–110.CrossRefGoogle Scholar
Dambach, M. and Rausche, G. (1985). Low frequency airborne vibrations in crickets and feedback control of calling song. In Acoustic Vibrational Communication in Insects (ed. Kalmring, K. and Elsner, N.), pp. 177–182. Berlin: Paul Parey.Google Scholar
Davis, R. L. (2005). Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302.CrossRefGoogle ScholarPubMed
Dawson, J. W., Kutsch, W. and Robertson, R. M. (2004). Auditory-evoked evasive manoeuvres in free-flying locusts and moths. J. Comp. Physiol. A 190, 69–84.CrossRefGoogle ScholarPubMed
Ruyter van Steveninck, R. and Laughlin, S. B. (1996). The rate of information transfer at graded-potential synapses. Nature 379, 642–645.CrossRefGoogle Scholar
Demir, E. and Dickson, B. J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794.CrossRefGoogle ScholarPubMed
Diamond, J. (1968). The activation and distribution of gaba and L-glutamate receptors on goldfish Mauthner neurons: an analysis of dendritic remote inhibition. J. Physiol. 194, 669–723.CrossRefGoogle ScholarPubMed
Douglass, J. K. and Strausfeld, N. J. (2003). Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc. Res. Techniq. 62, 132–150.CrossRefGoogle ScholarPubMed
Doupe, A. J. (1997). Song- and order-selective neurons in the song bird anterior forebrain and their emergence during vocal development. J. Neurosci. 17, 1147–1167.CrossRefGoogle ScholarPubMed
Dowling, J. and Boycott, B. (1966). Organization of the primate retina: electron microscopy. Proc. Roy. Soc. Lond. B 166, 80–111.CrossRefGoogle ScholarPubMed
Dowling, J. E. and Werblin, F. S. (1969). Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32, 315–338.CrossRefGoogle ScholarPubMed
Dvorak, D. R., Bishop, L. G. and Eckert, H. E. (1975). On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100, 5–23.CrossRefGoogle Scholar
Eaton, R. C. and Emberley, D. S. (1991). How stimulus direction determines the angle of the Mauthner initiated response in teleost fish. J. Exp. Biol. 161, 469–487.Google ScholarPubMed
Eaton, R. C., Lavender, W. A. and Wieland, C. M. (1981). Identification of Mauthner-initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. J. Comp. Physiol. 144, 521–531.CrossRefGoogle Scholar
Eaton, R., Lavender, W. and Wieland, C. (1982). Alternative neural pathways initiate fast-start responses following lesions of the Mauthner neuron in goldfish. J. Comp. Physiol. A 145, 485–496.CrossRefGoogle Scholar
Eccles, J. C. (1957). The Physiology of Nerve Cells. Baltimore, MD: Johns Hopkins Press.Google Scholar
Eccles, J. C. (1977). The Understanding of the Brain. New York: McGraw Hill.Google Scholar
Edwards, D., Yeh, S.-R. and Krasne, F. (1998). Neuronal coincidence detection by voltage-sensitive electrical synapses. Proc. Natl. Acad. Sci. USA 95, 1745–1750.CrossRefGoogle ScholarPubMed
Egelhaaf, M. (1985). On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed by the neuronal network and the role of the optomotor system. Biol. Cybern. 52, 123–140.CrossRefGoogle Scholar
Egelhaaf, M. and Borst, A. (1993). Motion computation and visual orientation in flies. Comp. Biochem. Physiol. 104A, 659–673.CrossRefGoogle Scholar
Elyada, Y. M., Haag, J. and Borst, A. (2009). Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat. Neurosci. 12, 327–332.CrossRefGoogle ScholarPubMed
Erber, J., Masuhr, T. and Menzel, R. (1980). Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5, 343–358.CrossRefGoogle Scholar
Espinoza, S., Breen, L., Varghese, N. and Faulkes, Z. (2006). Loss of escape-related giant neurons in a spiny lobster, Panulirus argus. Biol. Bull. 211, 223–231.CrossRefGoogle Scholar
Ewert, J.-P. (1980). Neuroethology. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Ewert, J.-P. (1985). Concepts in vertebrate neuroethology. Anim. Behav. 33, 1–29.CrossRefGoogle Scholar
Ewert, J.-P. (1987). Neuroethology of releasing mechanisms: prey-catching in toads. Behav. Brain Sci. 10, 337–403.CrossRefGoogle Scholar
Farooqui, T., Robinson, K., Vaessin, H. and Smith, B. H. (2003). Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci. 23, 5370–5380.CrossRefGoogle ScholarPubMed
Finkenstädt, T. and Ewert, J. (1988). Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: a 14C-2DG study. J. Comp. Physiol. A 163, 1–11.CrossRefGoogle ScholarPubMed
Fischer, H. and Kutsch, W. (2000). Relationships between body mass, motor output and flight variables during free flight of juvenile and mature adult locusts, Schistocerca gregaria. J. Exp. Biol. 203, 2723–2735.Google ScholarPubMed
Fortune, E. S. (2006). The decoding of electrosensory systems. Curr. Opin. Neurobiol. 16, 474–480.CrossRefGoogle ScholarPubMed
Franceschini, N., Hardie, R. C., Ribi, W. and Kirschfeld, K. (1981). Sexual dimorphism in a photoreceptor. Nature 291, 241–244.CrossRefGoogle Scholar
Franceschini, N., Riehle, A. and Nestour, A. (1989). Directionally selective motion detection by insect neurons. In Facets of Vision (ed. Stavenga, D. G. and Hardie, R. C.), pp. 360–390. Berlin: Springer.CrossRefGoogle Scholar
Frost, W. N. and Katz, P. S. (1996). Single neuron control over a complex motor pattern. Proc. Natl. Acad. Sci. USA 93, 422–426.CrossRefGoogle Scholar
Fry, S. N., Sayaman, R. and Dickinson, M. H. (2003). The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495–498.CrossRefGoogle ScholarPubMed
Furshpan, E. J. and Potter, D. D. (1959). Transmission at the giant motor synapses of the crayfish. J. Physiol. 145, 289–325.CrossRefGoogle ScholarPubMed
Gahtan, E., Sankrithi, N., Campos, J. and O'Malley, D. (2002). Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87, 608–614.CrossRefGoogle Scholar
Gallese, V., Fadiga, L., Fogassi, L. and Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain 119, 593–609.CrossRefGoogle ScholarPubMed
Gentner, T. Q. and Margoliash, D. (2003). Neuronal populations and single cells representing learned auditory objects. Nature 424, 669–674.CrossRefGoogle ScholarPubMed
Gentner, T. Q., Hulse, S. H., Duffy, D. and Ball, G. F. (2001). Response biases in auditory forebrain regions of female song birds following exposure to sexually relevant variation in male song. J. Neurobiol. 46, 48–58.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Grinnell, A. D. and Hagiwara, S. (1972). Studies of auditory neurophysiology in non-echolocating bats, and adaptations for echolocation in one genus, Rousettus. Z. vergl. Physiol. 76, 82–96.CrossRefGoogle Scholar
Grinnell, A. D. and Schnitzler, H.-U. (1977). Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum. II. Behavioural directionality of hearing. J. Comp. Physiol. 116, 63–76.CrossRefGoogle Scholar
Grothe, B. (2003). New roles for synaptic inhibition in sound localization. Nat. Rev. Neurosci. 4, 540–550.CrossRefGoogle ScholarPubMed
Haag, J. and Borst, A. (2004). Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nature Neurosci. 7, 628–634.CrossRefGoogle ScholarPubMed
Habersetzer, J. and Vogler, B. (1983). Discrimination of surface-structured targets by the echolocating bat Myotis myotis during flight. J. Comp. Physiol. 152, 275–282.CrossRefGoogle Scholar
Hafting, T., Fyhn, M., Molden, S., Moser, M. B. and Moser, E. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806.CrossRefGoogle ScholarPubMed
Hagedorn, M. and Heiligenberg, W. (1985). Court and spark: electric signals in the courtship and mating of gymnotoid fish. Anim. Behav. 33, 254–265.CrossRefGoogle Scholar
Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63.CrossRefGoogle ScholarPubMed
Hammer, M. and Menzel, R. (1995). Learning and memory in the honeybee. J. Neurosci. 15, 1617–1630.CrossRefGoogle ScholarPubMed
Hanson, A. (2004) History of the Norway rat (Rattus norvegicus). ‘Rat behavior’ and ‘Rat biology’. Online www.ratbehavior.org/history.htm. Accessed 25 August 2009.
Hardie, R. C. (1986). The photoreceptor array of the dipteran retina. Trends Neurosci. 9, 419–23.CrossRefGoogle Scholar
Harrow, I. D., Hue, B., Pelhate, M. and Sattelle, D. B. (1980). Cockroach giant interneurones stained by cobalt-backfilling of dissected axons. J. Exp. Biol. 84, 341–343.Google ScholarPubMed
Hartline, H. K., Wagner, H. G. and Ratliff, F. (1956). Inhibition in the eye of Limulus. J. Gen. Physiol. 39, 651–673.CrossRefGoogle ScholarPubMed
Hausen, K. and Egelhaaf, M. (1989). Neural mechanisms of visual course control in insects. In Facets of Vision (ed. Stavenga, D. G. and Hardie), R. C., pp. 391–424. Berlin: Springer.CrossRefGoogle Scholar
Hedwig, B. (2000). Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J. Neurophysiol. 83, 712–722.CrossRefGoogle ScholarPubMed
Hedwig, B. (2006). Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets. J. Comp. Physiol. A 192, 677–689.CrossRefGoogle ScholarPubMed
Hedwig, B. and Heinrich, R. (1997). Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J. Comp. Physiol. A 180, 285–294.CrossRefGoogle Scholar
Hedwig, B. and Pearson, K. G. (1984). Patterns of synaptic input to identified flight motoneurons in the locust. J. Comp. Physiol. A 154, 745–760.CrossRefGoogle Scholar
Hedwig, B. and Poulet, J. (2004). Complex auditory behaviour emerges from simple reactive steering. Nature 430, 781–785.CrossRefGoogle ScholarPubMed
Heiligenberg, W. (1991). Neural Nets in Electric Fish. Boston, MA: MIT Press.Google Scholar
Heiligenberg, W. and Partridge, B. L. (1981). How electroreceptors encode JAR-eliciting stimulus regimes: reading trajectories in a phase-amplitude plane. J. Comp. Physiol. A 142, 295–308.CrossRefGoogle Scholar
Heiligenberg, W. and Rose, G. (1985). Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. J. Neurosci. 5, 515–531.CrossRefGoogle ScholarPubMed
Heiligenberg, W., Baker, C. and Matsubara, J. (1978). The jamming avoidance response in Eigenmannia revisited: the structure of a neuronal democracy. J. Comp. Physiol. A 127, 267–286.CrossRefGoogle Scholar
Heitler, W. J. and Fraser, K. (1993). Thoracic connections between crayfish giant fibres and motor giant neurones reverse abdominal patterns. J. Exp. Biol. 181, 329–333.Google Scholar
Heitler, W., Fraser, K. and Ferrero, E. (2000). Escape behaviour in the stomatopod crustacean Squilla mantis, and the evolution of the caridoid escape reaction. J. Exp. Biol. 203, 183–192.Google ScholarPubMed
Henneman, E., Somjen, G. and Carpenter, D. O. (1965). Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28, 560–580.CrossRefGoogle ScholarPubMed
Hennig, R. M. (1990). Neuronal control of the forewings in two different behaviours: stridulation and flight in the cricket, Teleogryllus commodus. J. Comp. Physiol. A 167, 617–627.Google Scholar
Hensler, K. (1992). Neuronal co-processing of course deviation and head movements in locusts. I. Descending deviation detectors. J. Comp. Physiol. A 171, 257–271.Google Scholar
Herberholz, J., Issa, F. and Edwards, D. (2001). Patterns of neural circuit activation and behavior during dominance hierarchy formation in freely behaving crayfish. J. Neurosci. 21, 2759–2767.CrossRefGoogle ScholarPubMed
Herberholz, J., Sen, M. and Edwards, D. (2004). Escape behavior and escape circuit activation in juvenile crayfish during prey–predator interactions. J. Exp. Biol. 207, 1855–1863.CrossRefGoogle ScholarPubMed
Herrmann, K. and Arnold, A. P. (1991). The development of afferent projections to the robust archistriatal nucleus in male zebra finches: a quantitative electron microscopic study. J. Neurosci. 11, 2063–2074.CrossRefGoogle ScholarPubMed
Higgins, C. M., Douglass, J. K. and Strausfeld, N. J. (2004). The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Visual Neurosci. 21, 567–586.CrossRefGoogle ScholarPubMed
Hill, K. G. and Boyan, G. S. (1977). Sensitivity to frequency and direction of sound in the auditory system of crickets (Gryllidae). J. Comp. Physiol. A 121, 79–97.CrossRefGoogle Scholar
Hopkins, C. D. (1999). Design features for electric communication. J. Exp. Biol. 202, 1217–1228.Google ScholarPubMed
Horsman, U., Heinzel, H.-G. and Wendler, G. (1983). The phasic influence of self-generated air current modulations on the locust flight motor. J. Comp. Physiol. 150, 427–438.CrossRefGoogle Scholar
Huston, S. J. and Krapp, H. G. (2008). Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, 1468–1478.CrossRefGoogle ScholarPubMed
Hyde, P. S. and Knudsen, E. I. (2002). The optic tectum controls visually guided adaptive plasticity in the owl's auditory space map. Nature 415, 73–76.CrossRefGoogle ScholarPubMed
Issa, F., Adamson, D. and Edwards, D. (1999). Dominance hierarchy formation in juvenile crayfish Procambarus clarkii. J. Exp. Biol. 202, 3497–3506.Google ScholarPubMed
Jacobs, L. F. (2003). The evolution of the cognitive map. Brain Behav. Evol. 62, 128–139.CrossRefGoogle ScholarPubMed
Jarvis, E. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6, 151–159.CrossRefGoogle Scholar
Jarvis, E. D. and Nottebohm, F. (1997). Motor-driven gene expression. Proc. Natl. Acad. Sci. USA 94, 4097–4102.CrossRefGoogle ScholarPubMed
Jeffery, K. J. and Burgess, N. (2006). A metric for the cognitive map: found at last? Trends Cogn. Sci. 10, 1–3.Google Scholar
Jones, G. and Holderied, M. W. (2007). Bat echolocation calls: adaptation and convergent evolution. Proc. Roy. Soc. Lond. B 274, 905–912.CrossRefGoogle ScholarPubMed
Judge, S. J. and Rind, F. C. (1997). The locust DCMD, a movement-detecting neurone tightly tuned to collision trajectories. J. Exp. Biol. 200, 2209–2216.Google ScholarPubMed
Kalko, E. K. V. and Schnitzler, H.-U. (1998). How echolocating bats approach and acquire food. In Bat Biology and Conservation (ed. Kunz, T. H. and Racey, P. A.), pp. 197–204. Washington, DC: Smithsonian Institution Press.Google Scholar
Kandel, E. R. (1979). The Behavioral Biology of Aplysia. San Francisco, CA: Freeman.Google Scholar
Katz, P. S., Getting, P. A. and Frost, W. N. (1994). Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature 367, 729–731.CrossRefGoogle ScholarPubMed
Keil, T. (1997). Functional morphology of insect mechanoreceptors. Microsc. Res. Techniq. 39, 506–531.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Keller, G. B. and Hahnloser, H. R. (2009). Neural processing of auditory feedback during vocal practice in a song bird. Nature 457, 187–190.CrossRefGoogle Scholar
Kern, R., Hateren, J. H., Michaelis, C., Lindemann, J. P. and Egelhaaf, M. (2005). Eye movements during natural flight shape the function of a blowfly motion sensitive neuron. PLoS Biol. 6, 1131–1138.Google Scholar
Kern, R., Hateren, J. H. and Egelhaaf, M. (2006). Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements. J. Exp. Biol. 209, 1251–1260.CrossRefGoogle ScholarPubMed
Kimchi, T., Xu, J. and Dulac, C. (2007). A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014.CrossRefGoogle ScholarPubMed
Kimmel, C. B. and Eaton, R. C. (1976). Development of the Mauthner cell. In Simpler Networks and behavior (ed. Fentress, J. C.), pp. 186–202. Sunderland, MA: Sinauer Associates.Google Scholar
Kimmerle, B., Warzecha, A.-K. and Egelhaaf, M. (1997). Object detection in the fly during simulated translatory flight. J. Comp. Physiol. A 181, 247–255.CrossRefGoogle Scholar
Kirchner, W. H. and Srinivasan, M. V. (1989). Freely flying honeybees use image motion to estimate object distance. Naturwissenschaften 76, 281–282.CrossRefGoogle Scholar
Knudsen, E. I. (1981). The hearing of the barn owl. Sci. Am. 245, 83–91.CrossRefGoogle Scholar
Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of the barn owl. Nature 417, 322–328.CrossRefGoogle ScholarPubMed
Knudsen, E. I. and Knudsen, P. F. (1990). Sensitive and critical periods for visual calibration of sound localization by barn owls. J. Neurosci. 10, 222–232.CrossRefGoogle ScholarPubMed
Knudsen, E. I. and Konishi, M. (1979). Mechanisms of sound localisation in the barn owl (Tyto alba). J. Comp. Physiol 133, 13–21.CrossRefGoogle Scholar
Kolton, L. and Camhi, J. M. (1995). Cartesian representation of stimulus direction: parallel processing by two sets of giant interneurons in the cockroach. J. Comp. Physiol. A 176, 691–702.CrossRefGoogle ScholarPubMed
Konishi, M. (1965a). Effects of deafening on song development in American robins and black-headed grosbeaks. Z. Tierpsychol. 22, 584–599.Google ScholarPubMed
Konishi, M. (1965b). The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Z. Tierpsychol. 22, 770–783.Google ScholarPubMed
Konishi, M. (1992). The neural algorithm for sound localisation in the owl. Harvey Lect. 86, 47–64.Google Scholar
Konishi, M. (1993). Listening with two ears. Sci. Am. 268, 34–41.CrossRefGoogle ScholarPubMed
Konishi, M. (2006). Behavioral guides for sensory neurophysiology. J. Comp. Physiol. 192, 671–676.CrossRefGoogle ScholarPubMed
Koppl, C., Gleich, O. and Manley, G. A. (1993). An auditory fovea in the barn owl cochlea. J. Comp. Physiol. A. 171, 695–704.CrossRefGoogle Scholar
Krapp, H. G., Hengstenberg, B. and Hengstenberg, R. (1998). Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79, 1902–1917.CrossRefGoogle Scholar
Krasne, F. B. (1969). Excitation and habituation of the crayfish escape reflex: the depolarising response in lateral giant fibres of the isolated abdomen. J. Exp. Biol. 50, 29–46.Google Scholar
Krasne, F. B. and Lee, S. (1988). Response-dedicated trigger neurons as control points for behavioral actions: selective inhibition of lateral giant command neurons during feeding in crayfish. J. Neurosci. 8, 3703–3712.CrossRefGoogle ScholarPubMed
Krasne, F. B. and Wine, J. J. (1975). Extrinsic modulation of crayfish escape and behaviour. J. Exp. Biol. 63, 433–450.Google ScholarPubMed
Krasne, F. B. and Wine, J. J. (1977). Control of crayfish escape behavior. In Identified Neurons and Behavior of Arthropods (ed. Hoyle, G.), pp. 275–292. New York: Plenum.CrossRefGoogle Scholar
Kupferman, I. and Weiss, K. R. (1978). The command neuron concept. Brain Behav. Sci. 1, 3–39.CrossRefGoogle Scholar
Kutsch, W. (1969). Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z. vergl. Physiol. 63, 335–378.Google Scholar
Kutsch, W., Schwarz, G., Fischer, H. and Kautz, H. (1993). Wireless transmission of muscle potentials during free flight of a locust. J. Exp. Biol. 185, 367–373.Google Scholar
Lambert, T. D., Howard, J., Plant, A., Soffe, S. R. and Roberts, A. (2004). Mechanisms and significance of reduced activity and responsiveness in resting frog tadpoles. J. Exp. Biol. 207, 1113–1125.CrossRefGoogle ScholarPubMed
Laughlin, S. B. (1981). Neural principles in the peripheral visual systems of invertebrates. In Handbook of Sensory Physiology. Vol.VII/6B. Comparative Physiology and Evolution of Vision in Invertebrates: Invertebrate Visual Centers and Behavior (ed. Autrum, H.), pp. 133–280. Berlin: Springer Verlag.Google Scholar
Laughlin, S. B. and Hardie, R. C. (1978). Common strategies for light adaptation in the peripheral visual system of fly and dragonfly. J. Comp. Physiol. 128, 319–340.CrossRefGoogle Scholar
Laughlin, S. B. and Weckström, M. (1993). Fast and slow photoreceptors: a comparative study of the functional diversity of coding and conductances in the Diptera. J. Comp. Physiol. A 172, 593–609.CrossRefGoogle Scholar
Laughlin, S. B., Howard, J. and Blakeslee, B. (1987). Synaptic limitation to contrast coding in the retina of the blowfly Calliphora. Proc. Roy. Soc. Lond. B 231, 437–467.CrossRefGoogle Scholar
Lee, R. and Eaton, R. C. (1991). Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J. Comp. Neurol. 304, 34–52.CrossRefGoogle ScholarPubMed
Lee, R., Eaton, R. and Zottoli, S. (1993). Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. J. Comp. Neurol. 329, 539–556.CrossRefGoogle ScholarPubMed
Letzkus, P., Ribi, W. A., Wood, J. T., Zhu, H., Zhang, S.-W. and Srinivasan, M. V. (2006). Lateralization of olfaction in the honeybee Apis mellifera. Curr. Biol. 16, 1471–1476.CrossRefGoogle ScholarPubMed
Levi, R. and Camhi, J. M. (2000a). Population vector coding by the giant interneurons of the cockroach. J. Neurosci. 20, 3822–3829.CrossRefGoogle ScholarPubMed
Levi, R. and Camhi, J. M. (2000b). Wind direction coding in the cockroach escape response: winner does not take all. J. Neurosci 20, 3814–3821.CrossRefGoogle Scholar
Lewen, G. D., Ruyter van Steveninck, R. and Bialek, W. (2001). Neural coding of naturalistic motion stimuli. Network 12, 317–329.CrossRefGoogle ScholarPubMed
Li, W.-C., Soffe, S. R., Wolf, E. and Roberts, A. (2006). Persistent responses to brief stimuli: feedback excitation among brainstem neurons. J. Neurosci. 26, 4026–4035.CrossRefGoogle ScholarPubMed
Liebenthal, E., Uhlman, O. and Camhi, J. M. (1994). Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. J. Comp. Physiol. A 174, 281–296.CrossRefGoogle Scholar
Lillywhite, P. G. (1977). Single photon signals and transduction in an insect eye. J. Comp. Physiol. 122, 189–200.CrossRefGoogle Scholar
Link, A., Marimuthu, G. and Neuweiler, G. (1986). Movement as a specific stimulus for prey catching behaviour in rhinolophid and hipposiderid bats. J. Comp. Physiol. A 159, 403–413.CrossRefGoogle Scholar
Liu, K. S. and Fetcho, J. R. (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325–335.CrossRefGoogle ScholarPubMed
Livingstone, M., Harris-Warrick, R. and Kravitz, E. (1980). Serotonin and octopamine produce opposite postures in lobsters. Science 208, 76–79.CrossRefGoogle ScholarPubMed
London, S. E. and Clayton, D. F. (2008). Functional identification of sensory mechanisms required for developmental song learning. Nat. Neurosci. 11, 579–586.CrossRefGoogle ScholarPubMed
Lorenz, K. and Tinbergen, N. (1938). Taxis und Instinkthandlung in der Eirollbewegung der Graugans. Z. Tierpysychol. 2, 1–29.Google Scholar
Manley, G. A., Koppl, C. and Konishi, M. (1988). A neural map of interaural intensity differences in the brain stem of the barn owl. J. Neurosci. 8, 2665–2676.CrossRefGoogle ScholarPubMed
Manoli, D. S. and Baker, B. S. (2004). Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature 430, 564–569.CrossRefGoogle ScholarPubMed
Manoli, D., Foss, M., Villella, M., et al. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400.CrossRefGoogle ScholarPubMed
Manoli, D., Meissner, G. and Baker, B. (2006). Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci. 29, 444–451.CrossRefGoogle ScholarPubMed
Marler, P. and Slabberkoorn, H. (2004). Nature's Music: The Science of Birdsong. San Diego, CA: Elsevier.Google Scholar
Masino, T. and Knudsen, E. I. (1990). Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl. Nature 345, 434–437.CrossRefGoogle ScholarPubMed
Matheson, T., Rogers, S. M. and Krapp, H. G. (2004). Plasticity in the visual system is correlated with a change in lifestyle of solitarious and gregarious locusts. J. Neurophysiol. 91, 1–12.CrossRefGoogle ScholarPubMed
Mauelshagen, J. (1993). Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J. Neurophysiol. 69, 609–625.CrossRefGoogle Scholar
McLean, D. L., Fan, J., Higashijima, S., Hale, M. E. and Fetcho, J. R. (2007). A topographic map of recruitment in spinal cord. Nature 446, 71–75.CrossRefGoogle ScholarPubMed
McLean, D. L., Masino, M. A., Koh, I. Y. Y., Lindquist, W. B. and Fetcho, J. R. (2008). Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11, 1419–1429.CrossRefGoogle ScholarPubMed
Mello, C. V., Vicario, D. S. and Clayton, D. F. (1992). Song presentation induces gene expression in the song bird forebrain. Proc. Natl. Acad. Sci. USA 89, 6818–6822.CrossRefGoogle ScholarPubMed
Menzel, R. (1999). Memory dynamics in the honeybee. J. Comp. Physiol. A 185, 323–340.CrossRefGoogle Scholar
Menzel, R. and Erber, J. (1978). Learning and memory in bees. Sci. Am. 239, 80–87.CrossRefGoogle Scholar
Menzel, R. and Giurfa, M. (2001). Cognitive architecture of a mini-brain: the honeybee. Trends Cogn. Sci. 5, 62–71.CrossRefGoogle ScholarPubMed
Menzel, R., Marco, R. J. and Greggers, U. (2006). Spatial memory, navigation and dance behaviour in Apis mellifera. J. Comp. Physiol. A. 192, 889–903.CrossRefGoogle ScholarPubMed
Metzner, W. (1993). The jamming avoidance response in Eigemannia is controlled by two separate motor pathways. J. Neurosci. 13, 1862–1878.CrossRefGoogle Scholar
Metzner, W. (1999). Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J. Exp. Biol. 202, 1365–1375.Google ScholarPubMed
Meyrand, P., Simmers, A. J. and Moulins, M. (1991). Construction of a pattern generating circuit with neurons of different networks. Nature 351, 60–63.CrossRefGoogle ScholarPubMed
Meyrand, P., Simmers, A. J. and Moulins, M. (1994). Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J. Neurosci. 14, 630–644.CrossRefGoogle ScholarPubMed
Michelsen, A. and Nocke, H. (1974). Biophysical aspects of sound communication in insects. Adv. Insect Physiol. 10, 247–296.CrossRefGoogle Scholar
Michelsen, A., Anderson, B. B., Kirchner, W. H. and Lindauer, M. (1989). Honeybees can be recruited by a mechanical model of a dancing bee. Naturwissenschaften 76, 277–280.CrossRefGoogle Scholar
Miller, J. P. and Selverston, A. I. (1982) Mechanisms underlying pattern generation in lobster stomatogastic ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48, 1416–1432.CrossRefGoogle Scholar
Mizunami, M., Weibrecht, J. M. and Strausfeld, N. J. (1998). Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402, 520–527.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Möhl, B. (1985). The role of proprioception in locust flight control. II. Information relayed by forewing stretch receptors during flight. J. Comp. Physiol. A 156, 103–116.CrossRefGoogle Scholar
Möhl, B. (1988). Short-term learning during flight control inLocusta migratoria. J. Comp. Physiol. A 163, 803–812.CrossRefGoogle Scholar
Möhl, B. (1993). The role of proprioception for motor learning in locust flight. J. Comp. Physiol. A 172, 325–332.CrossRefGoogle Scholar
Moiseff, A. and Konishi, M. (1981). Neuronal and behavioural sensitivity to binaural time differences in the owl. J. Neurosci. 1, 40–48.CrossRefGoogle ScholarPubMed
Moller, P. (1995). Electric Fishes: History and Behavior. London: Chapman and Hall.Google Scholar
Morris, R. M. (1981). Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60.CrossRefGoogle Scholar
Morris, R., Anderson, E., Lynch, G. S. and Baudry, M. (1986). Selective impairment of learning and blockade of longterm potentiation by an N-methyl-d-aspartate receptor antagonist, ap5. Nature 319, 774–776.CrossRefGoogle Scholar
Moser, E. I. and Moser, M. B. (2008). A metric for space. Hippocampus 18, 1142–1156.CrossRefGoogle ScholarPubMed
Moser, E. I., Kropff, E. and Moser, M.-B. (2008). Place cells, grid cells, and the brain's spatial representation system. Ann. Rev. Neurosci. 31, 69–89.CrossRefGoogle ScholarPubMed
Muller, R. U., Kubie, J. L. and Ranck, J. B. J. (1987). Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950.CrossRefGoogle Scholar
Nabatiyan, A., Poulet, J. F. A., Polavieja, G. G. and Hedwig, B. (2003). Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J. Neurophysiol. 90, 2484–2493.CrossRefGoogle Scholar
Nakayama, H. and Oda, Y. (2004). Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209.CrossRefGoogle ScholarPubMed
Neuweiler, G. (1983). Echolocation and adaptivity to ecological constraints. In Neuroethology and Behavioural Physiology (ed. Huber, F. and Markl, H.), pp. 280–302. Berlin: Springer Verlag.CrossRefGoogle Scholar
Neuweiler, G. (2000). The Biology of Bats. New York: Oxford University Press.Google Scholar
Neuweiler, G., Bruns, V. and Schuller, G. (1980). Ears adapted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. J. Acoust. Soc. Am. 68, 741–753.CrossRefGoogle Scholar
Neuweiler, G., Singh, S. and Sripathi, K. (1984). Audiograms of a South Indian bat community. J. Comp. Physiol. 154, 133–142.CrossRefGoogle Scholar
Neuweiler, G., Metzner, W., Heilmann, U., et al. (1987). Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka. Behav. Ecol. Sociobiol. 20, 53–67.CrossRefGoogle Scholar
Neves, G., Cooke, S. F. and Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75.CrossRefGoogle ScholarPubMed
Newland, P. L. (1991). Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. J. Comp. Neurol. 311, 1–16.Google Scholar
Nicholl, R. A., Kauer, J. A. and Malenka, R. C. (1988). The current excitement in long term potentiation. Neuron 1, 97–103.CrossRefGoogle Scholar
Nicol, D. and Meinertzhagen, I. A. (1982). An analysis of the number and composition of synaptic populations formed by photoreceptors of the fly. J. Comp. Neurol. 207, 29–44.CrossRefGoogle Scholar
Nissanov, J., Eaton, R. C. and DiDomenico, R. (1990). The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res. 517, 88–98.CrossRefGoogle ScholarPubMed
Nolen, T. G. and Hoy, R. R. (1984). Initiation of behavior by single neurons: the role of behavioral context. Science 226, 992–994.CrossRefGoogle ScholarPubMed
Norberg, R. A. (1970). Hunting technique of Tengmalm's owl, Aegolius funereus (L.). Ornis Scand. 1, 51–64.CrossRefGoogle Scholar
Norberg, R. A. (1977). Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy. Phil. Trans. R. Soc. Lond. B 280, 375–408.CrossRefGoogle Scholar
Nordström, K., Barnett, P. D. and O'Carroll, D. C. (2006). Insect detection of small targets moving in visual clutter. PLoS Biol. 4, 378–386.CrossRefGoogle ScholarPubMed
Nottebohm, F. (1989). From bird song to neurogenesis. Sci. Am. 260, 74–79.CrossRefGoogle Scholar
Nottebohm, F., Stokes, T. and Leonard, C. (1976). Central control of song in the canary. J. Comp. Neurol. 165, 457–486.CrossRefGoogle Scholar
Okada, R., Rybak, J., Manz, G. and Menzel, R. (2007). Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J. Neurosci. 27, 11 736 –11 747.CrossRefGoogle ScholarPubMed
O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175.CrossRefGoogle ScholarPubMed
Olson, G. C. and Krasne, F. B. (1981). The crayfish lateral giants are command neurons for escape behavior. Brain Res. 214, 89–100.CrossRefGoogle ScholarPubMed
O'Malley, D., Kao, Y.-H. and Fetcho, J. R. (1996). Imaging the functional organization of zebrafish hindbrain segments during escape behaviours. Neuron 17, 1145–1155.CrossRefGoogle Scholar
O'Neill, W. E., and Suga, N. (1982). Encoding of target range and its representation in the auditory cortex of the moustached bat. J. Neurosci. 2, 17–31.CrossRefGoogle Scholar
O'Shea, M. and Rowell, C. H. F. (1976). The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. J. Exp. Biol. 65, 289–308.Google ScholarPubMed
Payne, R. S. (1971). Acoustic location of prey by barn owls (Tyto alba). J. Exp. Biol. 54, 535–573.Google Scholar
Pearson, K. G. and Ramirez, J.-M. (1990). Influence of input from the forewing stretch receptors on motoneurones in flying locusts. J. Exp. Biol. 151, 317–340.Google Scholar
Pearson, K. G. and Wolf, H. (1987). Comparison of motor patterns in the intact and deafferented flight motor system of the locust. J. Comp. Physiol. A 160, 259–268.CrossRefGoogle Scholar
Pearson, K. G. and Wolf, H. (1988). Connections of hindwing tegulae with flight neurones in the locust, Locusta migratoria. J. Exp. Biol. 135, 381–409.Google Scholar
Pearson, K. G., Reye, D. N., Parsons, D. W. and Bicker, G. (1985). Flight-initiating interneurons in the locust. J. Neurophysiol. 53, 910–923.CrossRefGoogle ScholarPubMed
Pereda, A., Bell, T. and Faber, D. (1995). Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell. J. Neurosci. 15, 5943–5955.CrossRefGoogle ScholarPubMed
Peron, S. and Gabbiani, F. (2009). Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat. Neurosci. 12, 318–326.CrossRefGoogle Scholar
Pires, A. and Hoy, R. R. (1992). Temperature coupling in cricket acoustic communication. 1. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus. J. Comp. Physiol. A 171, 68–79.Google ScholarPubMed
Pittenger, C. and Kandel, E. R. (2003). In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Phil. Trans. Roy. Soc. Lond. B 358, 757–763.CrossRefGoogle ScholarPubMed
Plummer, M. and Camhi, J. M. (1981). Discrimination of sensory signals from noise in the escape system of the cockroach: the role of wind acceleration. J. Comp. Physiol. 142, 347–357.CrossRefGoogle Scholar
Pollack, G. S. (1988). Selective attention in an insect auditory neuron. J. Neurosci. 8, 2635–2639.CrossRefGoogle Scholar
Pollak, G. D. (1980). Organizational and encoding features of single neurons in the inferior colliculus of bats. In Animal Sonar Systems (ed. Busnel, R. G., and Fish, J. F.), pp. 549–587. New York: Plenum Press.CrossRefGoogle Scholar
Pollak, G. D. and Schuller, G. (1981). Tonotopic organization and encoding features of single units in inferior colliculus of horseshoe bats: functional implications for prey identification. J. Neurophysiol. 45, 208–226.CrossRefGoogle ScholarPubMed
Pollak, G. D., Marsh, D., Bodenhamer, R. and Souther, A. (1977). Characteristics of phasic-on neurons in the inferior colliculus of unanaesthetised bats with observations relating to mechanisms of echo ranging. J. Neurophysiol. 40, 926–942.CrossRefGoogle Scholar
Poulet, J. F. A. and Hedwig, B. (2003). Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. J. Neurosci. 23, 4717–4725.CrossRefGoogle ScholarPubMed
Poulet, J. F. A. and Hedwig, B. (2005). Auditory orientation in crickets: pattern recognition controls reactive steering. Proc. Natl. Acad. Sci. USA 102, 15 665–15 669.CrossRefGoogle ScholarPubMed
Poulet, J. F. A. and Hedwig, B. (2006). The cellular basis of a corollary discharge. Science 311, 518–522.CrossRefGoogle ScholarPubMed
Poulet, J. F. A. and Hedwig, B. (2007). New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci. 30, 14–21.CrossRefGoogle ScholarPubMed
Prather, J. F., Peters, S., Nowicki, S. and Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451, 305–310.CrossRefGoogle ScholarPubMed
Pringle, J. W. S. (1975). Insect Flight. Oxford Biology Readers 52. Glasgow: Oxford University Press.Google Scholar
Prugh, J. I., Kimmel, C. B. and Metcalfe, W. K. (1982). Noninvasive recording of the Mauthner neurone action potential in larval zebrafish. J. Exp. Biol. 101, 83–92.Google ScholarPubMed
Ramirez, J.-M. and Pearson, K. G. (1991). Octopaminergic modulation of interneurons in the flight system of the locust. J. Neurophysiol. 66, 1522–1537.CrossRefGoogle ScholarPubMed
Ramon y Cajal, S. (1909). Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloine.
Reichert, H. and Wine, J. J. (1983). Coordination of lateral giant and non-giant escape systems in crayfish escape behaviour. J. Comp. Physiol. 153, 3–15.CrossRefGoogle Scholar
Reichert, H., Wine, J. J. and Hagiwara, G. (1981). Crayfish escape behaviour: behavioural analysis of phasic extension reveals dual systems for motor control. J. Comp. Physiol. 142, 281–294.CrossRefGoogle Scholar
Rind, F. C. (1984). A chemical synapse between two motion detecting neurones in the locust brain. J. Exp. Biol. 110, 143–167.Google ScholarPubMed
Rind, F. C. (1996). Intracellular characterization of neurons in the locust brain signalling impending collision. J. Neurophysiol. 75, 986–995.CrossRefGoogle Scholar
Rind, F. C. and Bramwell, D. I. (1996). A neural network based on the input organisation of an identified neuron signalling impending collision. J. Neurophysiol. 75, 967–985.CrossRefGoogle Scholar
Rind, F. C. and Simmons, P. J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. J. Neurophysiol. 68, 1654–1666.CrossRefGoogle ScholarPubMed
Rind, F. C. and Simmons, P. J. (1998). A local circuit for the computation of object approach by an identified visual neuron in the locust. J. Comp. Neurol. 395, 405–415.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Rind, F. C., Santer, R. D. and Wright, G. A. (2008). Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. J. Neurophysiol. 100, 670–680.CrossRefGoogle Scholar
Riquimaroux, H., Gaioni, S. J. and Suga, N. (1991). Cortical computational maps control auditory perception. Science 251, 565–568.CrossRefGoogle ScholarPubMed
Rister, J., Pauls, D., Schnell, B., et al. (2007). Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170.CrossRefGoogle ScholarPubMed
Ritzmann, R. E. (1993). The neural organization of cockroach escape and its role in context-dependent orientation. In Biological Neuronal Networks in Invertebrate Neuroethology and Robotics (ed. Beer, R. D., Ritzmann, R. E. and McKenna, T.), pp. 113–137. New York: Academic Press.Google Scholar
Robert, D. (1989). The auditory behaviour of flying locusts. J. Exp. Biol. 147, 279–301.Google Scholar
Roberts, A. (1990). How does a nervous system produce behaviour? A case study in neurobiology. Sci. Progr. 74, 31–51.Google ScholarPubMed
Roberts, A. (2000). Early functional organization of spinal neurons in developing lower vertebrates. Brain Res. Bull. 53, 585–593.CrossRefGoogle ScholarPubMed
Roberts, A. and Tunstall, M. J. (1990). Mutual re-excitation with post-inhibitory rebound: a simulation study of the mechanisms or locomotor rhythm generation in the spinal cord of Xenopus embryos. Eur. J. Neurosci. 2, 11–23.CrossRefGoogle ScholarPubMed
Roberts, A., Li, W.-C. and Soffe, S. R. (2008a). Roles for inhibition: studies on networks controlling swimming. J. Comp. Physiol. A 194, 185–193.CrossRefGoogle ScholarPubMed
Roberts, A., Li, W.-C., Soffe, S. R. and Wolf, E. (2008b). Origin of excitatory drive to a spinal locomotor network. Brain Res. Rev. 57, 22–28.CrossRefGoogle ScholarPubMed
Roberts, B. L. (1969). Spontaneous rhythms in the motoneurones of spinal dogfish (Scyliorhinus canicule). J. Mar. Biol. Assoc. UK. 49, 3349.Google Scholar
Robertson, R. M. and Pearson, K. G. (1982). A preparation for the intracellular analysis of neuronal activity during flight in the locust. J. Comp. Physiol. 146, 311–320.CrossRefGoogle Scholar
Robertson, R. M. and Pearson, K. G. (1983). Interneurons in the flight system of the locust: distribution, properties and resetting properties. J. Comp. Neurol. 215, 33–50.CrossRefGoogle ScholarPubMed
Robertson, R. M. and Pearson, K. G. (1985). Neural circuits in the flight system of the locust. J. Neurophysiol. 53, 110–128.CrossRefGoogle ScholarPubMed
Rodríguez, F., Lópeza, J. C., Vargasa, J. P., et al. (2002). Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res. Bull. 57, 499–503.CrossRefGoogle ScholarPubMed
Roeder, K. D. (1962). The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Anim. Behav. 10, 300–304.CrossRefGoogle Scholar
Roessingh, P., Simpson, S. J. and James, S. (1993). Analysis of phase-related changes in behaviour of desert locust nymphs. Proc. Roy. Soc. Lond. B 252, 43–49.CrossRefGoogle Scholar
Roessingh, P., Bouaïchi, A. and Simpson, S. J. (1998). Effects of sensory stimuli on the behavioural phase state of the desert locust, Schistocerca gregaria. J. Insect Physiol. 44, 883–893.CrossRefGoogle ScholarPubMed
Rogers, S. M., Matheson, T., Despland, E., et al. (2003). Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria. J. Exp. Biol. 206, 3991–4002.CrossRefGoogle ScholarPubMed
Rogers, S. M., Krapp, H. G., Burrows, M. and Matheson, T. (2007). Compensatory plasticity at an identified synapse tunes a visuomotor pathway. J. Neurosci. 27, 4621–4633.CrossRefGoogle Scholar
Rose, G. J. (2004). Insights into neural mechanisms and evolution of behaviour from electric fish. Nat. Rev. Neurosci. 5, 943–951.CrossRefGoogle ScholarPubMed
Rose, G. and Heiligenberg, W. (1985). Structure and function of electrosensory neurons in the torus semicircularis of Eigenmannia: morphological correlates of phase and amplitude sensitivity. J. Neurosci. 5, 2269–2280.CrossRefGoogle ScholarPubMed
Rose, G. J., Kawasaki, M. and Heiligenberg, W. (1988). ‘Recognition units’ at the top of a neuronal hierarchy? – prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously. J. Comp. Physiol. A 162, 759–772.CrossRefGoogle ScholarPubMed
Rossell, S. (1979). Regional differences in photoreceptor performance in the eye of the praying mantis. J. Comp. Physiol. 131, 95–112.CrossRefGoogle Scholar
Rowell, C. H. F. (1971). The orthopteran descending movement detector (DMD) neurones: a characterisation and review. J. Comp. Physiol. 73, 167–194.Google Scholar
Russell, J. C., Towns, D. R., Anderson, S. H. and Clout, M. N. (2005). Intercepting the first rat ashore. Nature 437, 1107.CrossRefGoogle ScholarPubMed
Rydqvist, B., Lin, J.-H. and Swerup, C. (2007). Mechanotransduction and the crayfish stretch receptor. Physiol. Behav. 92, 21–28.CrossRefGoogle ScholarPubMed
Sales, G. and Pye, D. (1974). Ultrasonic Communication by Animals. London: Chapman and Hall.CrossRefGoogle Scholar
Santer, R. D., Simmons, P. J. and Rind, F. C. (2005) Gliding behaviour elicited by lateral looming stimuli in flying locusts. J. Comp. Physiol. A 191, 61–73.CrossRefGoogle ScholarPubMed
Santer, R. D., Rind, F. C., Stafford, R. and Simmons, P. J. (2006). Role of an identified looming-sensitive neuron in triggering a flying locust's escape. J. Neurophysiol. 95, 3391–3400.CrossRefGoogle ScholarPubMed
Sautois, B., Soffe, S. R., Li, W.-C. and Roberts, A. (2007). Role of type-specific neuron properties in a spinal cord motor network J. Comput. Neurosci. 23, 59–77.Google Scholar
Schilstra, C. and Hateren, J. H. (1998). Stabilizing gaze in flying blowflies. Nature 395, 654.CrossRefGoogle ScholarPubMed
Schilstra, C. and Hateren, J. H. (1999). Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202, 1481–1490.Google ScholarPubMed
Schmitz, B., Scharstein, H. and Wendler, G. (1983). Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae): II. Acoustic orientation of female crickets after occlusion of single sound entrances. J. Comp. Physiol. A 152, 257–264.CrossRefGoogle Scholar
Schnitzler, H.-U. and Kalko, E. K. V. (2001). Echolocation by insect eating bats. BioScience 51, 557–569.CrossRefGoogle Scholar
Schramek, J. E. (1970). Crayfish swimming: alternating motor output and giant fiber activity. Science 169, 698–700.CrossRefGoogle Scholar
Schuller, G. (1984). Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 154, 121–128.CrossRefGoogle Scholar
Selverston, A. I. and Miller, J. P. (1980). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system. J. Neurophysiol. 44, 1102–1121.CrossRefGoogle ScholarPubMed
Sherman, A. and Dickinson, M. H. (2003). A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J. Exp. Biol. 206, 295–302.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2003). Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognitionBrain Behav. Evol. 62, 108–116.CrossRefGoogle ScholarPubMed
Sillar, K., Wedderburn, J. F. S. and Simmers, A. J. (1991). The postembryonic development of locomotor rhythmicity in Xenopus laevis tadpoles. Proc. Roy. Soc. Lond. B. 246, 147–153.CrossRefGoogle Scholar
Silvey, G. and Wilson, I. (1979). Structure and function of the lateral giant neurone of the primitive crustacean Anaspides tasmaniae. J. Exp. Biol. 78, 121–136.Google Scholar
Simmons, P. J. (1980). A locust wind and ocellar brain neurone. J. Exp. Biol. 85, 281–294.Google Scholar
Simmons, P. J. (2002). Signal processing in a simple visual system: the locust ocellar system and its synapses. Microsc. Res. Techniq. 56, 270–280.CrossRefGoogle Scholar
Simmons, P. J. and Rind, F. C. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. J. Neurophysiol. 68, 1667–1682.CrossRefGoogle ScholarPubMed
Simmons, P. J. and Young, D. (1978). The tymbal mechanism and song patterns of the bladder cicada, Cystosoma saundersii. J. Exp. Biol. 76, 27–45.Google Scholar
Simpson, S. J., Despland, E., Hägele, B. F. and Dodgson, T. (2001). Gregarious behavior in desert locusts is evoked by touching their back legs. Proc. Natl. Acad. Sci. USA 98, 3895–3897.CrossRefGoogle ScholarPubMed
Snodgrass, R. E. (1935). Principles of Insect Morphology. New York: McGraw-Hill.Google Scholar
Sokolowski, M. L. (2001). Drosophila: genetics meets behaviour. Nat. Rev. Genet. 2, 879–892.CrossRefGoogle ScholarPubMed
Solis, M. M. and Doupe, A. J. (1997). Anterior forebrain neurons develop selectivity by an intermediate stage of birdsong learning. J. Neurosci. 17, 6447–6462.CrossRefGoogle ScholarPubMed
Srinivasan, M. V. (1992). How bees exploit optic flow: behavioural experiments and neural models. Phil. Trans. Roy. Soc. B 337, 253–259.CrossRefGoogle Scholar
Srinivasan, M. V., Laughlin, S. B. and Dubs, A. (1982). Predictive coding: a fresh view of inhibition in the retina. Proc. Roy. Soc. Lond. B. 216, 427–459.CrossRefGoogle ScholarPubMed
Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. and Dickson, B. J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807.CrossRefGoogle ScholarPubMed
Suga, N., Neuweiler, G. and Moller, J. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J. Comp. Physiol. 106, 111–125.CrossRefGoogle Scholar
Sullivan, W. E. (1982). Neural representation of target distance in auditory cortex of the echolocating bat, Myotis lucifugus. J. Neurophysiol. 48, 1011–1032.CrossRefGoogle Scholar
Suthers, R. A. (1990). Contributions to birdsong from the left and right sides of the intact syrinx. Nature 347, 473–477.CrossRefGoogle Scholar
Takahashi, T., Moiseff, A. and Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. J. Neurosci. 4, 1781–1786.CrossRefGoogle ScholarPubMed
Taube, J. S. (2007). The head direction signal: origins and sensory-motor integration. Ann. Rev. Neurosci. 30, 181–207.CrossRefGoogle ScholarPubMed
Taube, J. S., Muller, R. U. and Ranck, J. B. J. (1990a). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435.CrossRefGoogle Scholar
Taube, J. S., Muller, R. U. and Ranck, J. B. J. (1990b). Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447.CrossRefGoogle ScholarPubMed
Thompson, L. T. and Best, P. J. (1990). Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308.CrossRefGoogle ScholarPubMed
Thorpe, W. H. (1958). The learning of song patterns by birds, with especial references to the song of the chaffinch, Fringilla coelebs. Ibis 100, 535–570.CrossRefGoogle Scholar
Tinbergen, N. (1951). The Study of Instinct. Oxford: Clarendon Press.Google Scholar
Tinbergen, N. (1963). On aims and methods in Ethology. Z. für Tierpsychol. 20, 410–433.CrossRefGoogle Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189–208.CrossRefGoogle ScholarPubMed
Tyrer, N. M., Turner, J. D. and Altman, J. (1984). Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J. Comp. Neurol. 227, 313–333.CrossRefGoogle ScholarPubMed
Vater, M., Feng, A. S. and Betz, M. (1985). An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J. Comp. Physiol. A 157, 671–686.CrossRefGoogle ScholarPubMed
Vicario, D. S. (1991). Organization of the zebrafinch song control system. II. Functional organization of the output from the nucleus robustus archistiriatalis. J. Comp. Neurol. 309, 486–494.CrossRefGoogle Scholar
Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University Press.Google Scholar
Vrontou, E., Nilsen, S. P., Demir, E., Kravitz, E. A. and Dickson, B. J. (2006). fruitless regulates aggression and dominance in Drosophila. Nat. Neurosci. 9, 1469–1471.CrossRefGoogle ScholarPubMed
Vu, E. and Krasne, F. (1993). The mechanism of tonic inhibition of crayfish escape behavior: distal inhibition and its functional significance. J. Neurosci. 13, 4394–4402.CrossRefGoogle ScholarPubMed
Vu, E. T., Mazurek, M. E. and Kuo, Y.-C. (1994). Identification of a forebrain motor programming network for the learned song of zebra finches. J. Neurosci. 14, 6924–6934.CrossRefGoogle ScholarPubMed
Wada, K.et al. (2006). A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc. Natl. Acad. Sci. USA 103, 15 212–15 217.CrossRefGoogle ScholarPubMed
Wagner, H. (1986). Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.). I. Organization of the flight motor. Phil. Trans. Roy. Soc. B 312, 527–551.CrossRefGoogle Scholar
Wallhausser-Franke, E., Nixdorf-Bergweiler, B. E. and DeVoogd, T. J. (1995). Song isolation is associated with maintaining high spine frequencies on zebrafinch lMAN neurons. Neurobiol. Learn. Mem. 64, 25–35.CrossRefGoogle Scholar
Warzecha, A.-K., Egelhaaf, M. and Borst, A. (1993). Neural circuit tuning fly visual neurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J. Neurophysiol. 69, 329–339.CrossRefGoogle ScholarPubMed
Werblin, F. S. and Dowling, J. E. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355.CrossRefGoogle ScholarPubMed
Wiersma, C. A. G. (1947). Giant nerve fiber system of the crayfish: a contribution to comparative physiology of the synapse. J. Neurophysiol. 10, 23–38.CrossRefGoogle ScholarPubMed
Wiersma, C. A. G. and Ikeda, K. (1964). Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12, 509–525.CrossRefGoogle Scholar
Willows, A. O. D., Dorsett, D. A. and Hoyle, G. (1973). The neuronal basis of behavior in Tritonia. III. Neuronal mechanism of a fixed action pattern. J. Neurobiol. 4, 255–285.CrossRefGoogle Scholar
Wilson, D. M. (1960). The central nervous control of flight in a locust. J. Exp. Biol. 38, 471–490.Google Scholar
Wilson, D. M. (1968). The flight control system of the locust. Sci. Am. 218, 83–90.CrossRefGoogle ScholarPubMed
Wilson, M. (1978). The functional organization of locust ocelli. J. Comp. Physiol. 124, 297–316.CrossRefGoogle Scholar
Wilson, M., Garrard, P. and McGiness, S. (1978). The unit structure of the locust compound eye. Cell Tiss. Res. 195, 205–226.CrossRefGoogle ScholarPubMed
Wine, J. (1984). The structural basis of an innate behavioural pattern. J. Exp. Biol. 112, 283–319.Google Scholar
Wine, J. J. and Krasne, J. B. (1982). The cellular organization of crayfish escape behavior. In The Biology of Crustacea, vol. 4 (ed. Bliss, E. D.), pp. 241–292. New York: Academic Press.Google Scholar
Wine, J. J. and Mistick, D. C. (1977). Temporal organization of crayfish escape behavior: delayed recruitment of peripheral inhibition. J. Neurophysiol. 40, 904–925.CrossRefGoogle ScholarPubMed
Witten, I. B., Bergan, J. F. and Knudsen, E. I. (2006). Dynamic shifts in the owl's auditory space map predict moving sound location. Nat. Neurosci. 11, 1439–1445.CrossRefGoogle Scholar
Wohlers, D. W. and Huber, F. (1982). Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J. Comp. Physiol. A 146, 161–173.CrossRefGoogle Scholar
Wong, D. (2004). The auditory cortex of the little brown bat, Myotis lucifugus. In Echolocation in Bats and Dolphins (ed. Thomas, J. A., Moss, C. F. and Vater, M.), pp. 185–189. Chicago, IL: Chicago University Press.Google Scholar
Wong, D., Maekawa, M. and Tanaka, H. (1992). The effect of pulse repetition rate on the delay sensitivity of neurons in the auditory cortex of the FM bat, Myotis lucifugus. J. Comp. Physiol. 170, 393–402.CrossRefGoogle ScholarPubMed
Yazaki-Sugiyama, Y. and Mooney, R. (2004). Sequential learning from multiple tutors and serial retuning of auditory neurons in a brain area important to birdsong learning. J. Neurophysiol. 92, 2771–2788.CrossRefGoogle Scholar
Yeh, S., Musolf, B. and Edwards, D. (1997). Neuronal adaptations to changes in the social dominance status of crayfish. J. Neurosci. 17, 697–708.CrossRefGoogle ScholarPubMed
Young, D. and Ball, E. (1974). Structure and development of the tracheal organ in the mesothoracic leg of the cricket Teleogryllus commodus (Walker). Z. Zellforsch. 147, 325–334.CrossRefGoogle Scholar
Young, D. and Bennett–Clark, H. C. (1995). The role of the tymbal in cicada song production. J. Exp. Biol. 198, 1001–1019.Google Scholar
Yu, A. C. and Margoliash, D. (1996). Temporal hierarchical control of singing in birds. Science 273, 1871–1875.CrossRefGoogle ScholarPubMed
Zottoli, S. J. (1977). Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J. Exp. Biol. 66, 243–254.Google ScholarPubMed
Zottoli, S. J. (1978). Comparative morphology of the Mauthner cell in fish and amphibians. In Neurobiology of the Mauthner Cell (ed. Faber, D. S., and Korn, H.), pp. 13–45. New York: Raven Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter Simmons, David Young, University of Melbourne
  • Book: Nerve Cells and Animal Behaviour
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511782138.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter Simmons, David Young, University of Melbourne
  • Book: Nerve Cells and Animal Behaviour
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511782138.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter Simmons, David Young, University of Melbourne
  • Book: Nerve Cells and Animal Behaviour
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511782138.011
Available formats
×