Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T17:23:07.335Z Has data issue: false hasContentIssue false

11 - MOS systems with high-k dielectrics

from Part III - Real MOS systems

Published online by Cambridge University Press:  05 October 2014

Olof Engström
Affiliation:
Chalmers University of Technology, Gothenberg
Get access

Summary

The motivation for high-k dielectrics

For each new generation in MOS-technology, a recurrent problem has been the so-called “short channel effect.” It occurs when decreasing the gate length such that the edge of the depletion region at drain approaches the source contact close enough for increasing the leakage between source and drain and for decreasing the transistor threshold voltage (Fig. 11.1(a)). For bulk CMOS technology, the standard method to avoid this issue has been to increase the doping in the channel region in order to decrease the depletion region width of the drain junction. This measure, however, decreases the capacitive coupling between gate and channel and lowers the share of the gate voltage falling across the semiconductor channel. As a consequence, the sub-threshold slope decreases, which in turn slows down the switching speed of the transistor. Furthermore, increased doping levels in the channel give rise to higher scattering probabilities and lowered charge carrier mobility. These problems can be avoided by decreasing the thickness of the gate oxide in order to increase the capacitance between gate and channel such that the oxide capacitance becomes much larger than the channel capacitance and gives a major share of the applied gate voltage to the semiconductor. Measures along these lines were possible until the gate length downscaling reached about 45 nm. At this landmark, the SiO2 dielectric needed to reach a thickness of about 1.5 nm, which gave rise to unacceptable gate leakage levels (Taur et al., 1998; Iwai and Ohmi, 2002; Iwai, 2009; Wong and Iwai, 2006; Frank, 2011).

Type
Chapter
Information
The MOS System , pp. 261 - 296
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. W. (1975). Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953.CrossRefGoogle Scholar
Andersson, M. O. and Engström, O. (1989). Atomic relaxation of Si-SiO2 interface states measured by a photo-depopulation technique. Appl. Surf. Sci. 39, 289.CrossRefGoogle Scholar
Barrud, S., Thevenod, L., Cassé, M., Bonno, O. and Mouis, M. (2007). Modeling of remote Coulomb scattering limited mobility in MOSFET with HfO2/SiO2 gate stacks. Microel. Eng. 84, 2404.CrossRefGoogle Scholar
Bersch, E., Di, M., Consiglio, S., Clark, R. D., Leusink, G. J. and Diebold, A. C. (2010). Complete band offset characterization of the HfO2/SiO2/Si stack using charge corrected x-ray photoelectron spectroscopy. J. Appl. Phys. 107, 043702.CrossRefGoogle Scholar
Cantin, J. L. and von Bardeleben, H. J. (2002). An electron paramagnetic resonance study of the Si(100)/Al2O3 interface defects. J. Non-Cryst. Sol. 303, 175.CrossRefGoogle Scholar
Ceresoli, D. and Vanderbilt, D. (2006). Structural and dielectric properties of ZrO2 and HfO2. Phys. Rev. B 74, 125108.CrossRefGoogle Scholar
Clark, S. J., Lin, L. and Robertson, J. (2011). On the identification of the oxygen vacancy in HfO2. Microel. Eng. 88, 1464.CrossRefGoogle Scholar
Clémer, K., Stesmans, A., Afanas’ev, V. V., Edge, L. F. and Schlom, D. G. (2007). Paramagnetic point defects in (100)Si/LaAlO3 structures: Nature and stability of interface. J. Appl. Phys. 102, 034516.CrossRefGoogle Scholar
Coh, S., Heeg, T., Haeni, J. H. et al. (2010). Si-compatible candidates for high-k dielectrics with the Pnm perovskite structure. Phys. Rev. B, 82, 064101.CrossRefGoogle Scholar
Colinge, J.-P. (2004). Multiple gate SOI-MOSFETs. Solid-State Electron. 48, 897.CrossRefGoogle Scholar
Engström, O. (2007). Will the insulated gate transistor concept survive next decade? In Luryi, S., Xu, J. and Zaslavsky, A. (eds.) Future Trends in Microelectronics: Up the Nano Creek. Chichester: John Wiley & Sons, p. 192.Google Scholar
Engström, O. (2011). Electron states in MOS systems. ECS Trans. 35, 19.CrossRefGoogle Scholar
Engstrom, O. (2012). A model for internal photoemission at high-k oxide/silicon energy barriers. J. Appl. Phys. 112, 064115.CrossRefGoogle Scholar
Engström, O. (2013a). Response to “Comment on a model for internal photoemission at high-k oxide/silicon energy barriers.”J. Appl. Phys. 113, 166102.CrossRefGoogle Scholar
Engström, O. (2013b). Compensation effects at electron traps in semiconductors. Monatshefte für chemie (Chemical Monthly) 144, 73.CrossRefGoogle Scholar
Engström, O., Mitrovic, I. Z. and Hall, S. (2012). Influence of interlayer properties on the characteristic of high-k gate stacks. Solid-State Electron. 75, 63.CrossRefGoogle Scholar
Engström, O., Mitrovic, I. Z., Hall, S. et al. (2010a) Gate stacks. In Balestra, F. (ed.) Nanoscale CMOS, Innovative Materials, Modeling and Characterization. Chichester: John Wiley & Sons, p. 23.Google Scholar
Engström, O., Raeissi, B., Hall, S. et al. (2007). Navigation aids in the search forfuture high-k dielectrics: physical and electrical trends. Solid-State Electron. 51, 626.CrossRefGoogle Scholar
Engström, O., Raeissi, B. and Piscator, J. (2008a). Vibronic nature of hafnium oxide/silicon interface states investigated by capacitance frequency spectroscopy. J. Appl. Phys. 103, 104101.CrossRefGoogle Scholar
Engström, O., Piscator, J., Raeissi, B. et al. (2008b). A generalised methodology for oxide leakage current metric. Proc. 9th International Conference on Ultimate Integration on Silicon (ULIS), p. 167.
Engström, O., Raeissi, B., Piscator, J. et al. (2010b). Charging phenomena at the interface between high-k dielectrics and SiO interlayers. J. Telecomm Inf. Theory. 1, 11.Google Scholar
Fedorenko, Y. G., Truong, L., Afanas’ev, A. A., Stesmans, A., Zhang, Z. and Campbell, S. A. (2005). Impact of nitrogen on interface states in (100)Si/HfO2. J. Appl. Phys. 98, 123703.CrossRefGoogle Scholar
Fischetti, M. V., Neumayer, D. A., Cartier, E. A. (2001). Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587.CrossRefGoogle Scholar
Frank, M. M. (2011). High-k/metal gate innovations enabling continued CMOS scaling. Proc. ESSDERC, p. 25.
Gavartin, J. L., Muñoz-Ramo, D., Shluger, A. L., Bersuker, G. and Lee, B. H. (2006). Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 082908.CrossRefGoogle Scholar
Gillen, R., Robertson, J. and Clark, S. J. (2013). Electron spin resonance signature of the oxygen vacancy in HfO2. Appl. Phys. Lett. 101, 102904.CrossRefGoogle Scholar
Goswami, A. and Goswami, A. P. (1975). Optical properties of praseodymium oxide films. Thin Solid Films 27, 123.CrossRefGoogle Scholar
Gottlob, H. D. B., Schmidt, M., Stefani, A. et al. (2009a). Scaling MOSFET integration of thermally stable Gd silicate dielectrics. Microel. Eng. 86 1642.CrossRefGoogle Scholar
Gottlob, H. D. B., Stefani, A., Schmidt, M. et al. (2009b). G silicate: A high-k dielectric compatible with high temperature annealing. J. Vac. Sci. Tech. B 27, 249.CrossRefGoogle Scholar
Henry, C. H. and Lang, D. (1977). Nonradiative capture recombination by multiphonon emission in GaAs and GaP. Phys. Rev. B 15, 989.CrossRefGoogle Scholar
Hess, K. and Vogel, P. (1979). Remote polar phonon scattering in silicon inversion layers. Solid-State Comm. 30, 807.CrossRefGoogle Scholar
Hurley, P. K., Cherkaoui, K., O’Connor, E. et al. (2008). Interface defects in HfO2, LaSiOx and GdO3 high-k/metal-gate structures on silicon. J. Electrochem. Soc. 155, G13.CrossRefGoogle Scholar
Iwai, H. (2009). Roadmap for 22 nm and beyond. Microel. Eng. 86, 1520.CrossRefGoogle Scholar
Iwai, H. and Ohmi, S. (2002). Silicon integrated circuit technology from past to future. Microel. Eng. 42, 465.Google Scholar
Kakushima, K., Tstsui, K., Ohmi, S.-I., Ahmet, P., Rao, V. R. and Iwai, H. (2007). Rare earth oxides in microelectronics. In Fancuilli, M. and Scarel, G. (eds.) Rare Earth Oxide Thin Films: Growth Characterization and Applications. New York: Springer, p. 345.Google Scholar
Kittel, C. (1967). Introduction to Solid State Physics. Chichester: John Wiley & Sons.Google Scholar
Lax, M. (1960). Cascade capture of electrons in solids. Phys. Rev. 119, 1502.CrossRefGoogle Scholar
Lopes, J. M., Rockerath, M., Heeg, T. et al. (2006). Amorphous lanthanum lutetium thin films as an alternative high-k gate dielectric. Appl. Phys. Lett. 89, 222902.CrossRefGoogle Scholar
Mitrovic, I. Z., Hall, S., Desghi, N. et al. (2012). On the nature of the interfacial layer in ultra-thin TiN/LaLuO3 gate stacks. J. Appl. Phys. 112, 044102.CrossRefGoogle Scholar
Moore, B. T. and Ferry, D. K. (1980). Remote polar scattering in Si inversion layers. J. Appl. Phys. 51, 2603.CrossRefGoogle Scholar
Mott, N. F. and Gurney, R. W. (1940). Electronic Processes in Ionic Crystals. Oxford: Oxford University Press.Google Scholar
Muller, D. A. and Wilk, G. D. (2001). Atomic scale measurements of the interfacial electronic structure and chemistry of zirconium silicate gate dielectrics. Appl. Phys. Lett. 79, 4195.CrossRefGoogle Scholar
Muñoz-Ramo, D., Shluger, A. L., Gavartin, J. L. and Bersuker, G. (2007a), Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 99, 155504.CrossRefGoogle ScholarPubMed
Muñoz-Ramo, D., Shluger, A. L., Gavartin, J. L. and Bersuker, G. (2007b). Intrinsic and defect-assisted trapping of electrons and holes in HfO2: an abinitio study. Microel. Eng. 84, 2362.CrossRefGoogle Scholar
Oh, S.-H. (2000). Analytic description of short channel effects in fully depleted double gate and cylindrical, surrounding-gate MOSFETs. IEEE Electron Dev. Lett., 21, 445.Google Scholar
Pelloquin, S., Saint-Girons, G., Baboux, N. et al. (2013). LaAlO3/Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties. J. Appl. Phys. 113, 034106.CrossRefGoogle Scholar
Perego, M. and Seguini, G. (2011). Charging phenomena in dielectric/semiconductor heterostructures during x-ray photoelectron spectroscopy measurements. J. Appl. Phys. 110, 053711.CrossRefGoogle Scholar
Perevalov, T. V., Gritsenko, S. B., Badalyan, A. M. and Wong, H. (2007). Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations. J. Appl. Phys. 101, 053704.CrossRefGoogle Scholar
Piscator, J., Raeissi, B. and Engström, O. (2009). Multiparameter admittance spectroscopy for metal-oxide-semiconductor systems. J. Appl. Phys. 106, 054510.CrossRefGoogle Scholar
Raeissi, B., Piscator, J. and Engström, O. (2010). Multiparameter admittance spectroscopy as a diagnostic tool for interface states at oxide/semiconductor interfaces. IEEE Trans. Electron Dev. 57, 1702.CrossRefGoogle Scholar
Raeissi, B., Piscator, J., Engström, O. et al. (2008). High-k/silicon interfaces characterized by capacitance frequency spectroscopy. Solid-State Electron. 52, 1274.CrossRefGoogle Scholar
Ricksand, A. and Engström, O. (1991). Thermally activated capture of charge carriers into irradiation induced Si/SiO2 interface states. J. Appl. Phys. 70, 6927.CrossRefGoogle Scholar
Risch, L. (2006). Pushing CMOS beyond the roadmap. Solid-State Electron. 50, 527.CrossRefGoogle Scholar
Robertson, J. (2004). High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265.CrossRefGoogle Scholar
Robertson, J. (2008). Maximizing performance for higher K gate dielectrics. J. Appl. Phys. 104, 124111.CrossRefGoogle Scholar
Schlom, D. G., Billman, C. A., Haeni, J. H. et al. (2005). High-k candidates for use as the gate dielectric in silicon MOSFETs. In Thin Films and Heterostructures for Oxide Electronics. New York: Springer, p. 31.CrossRefGoogle Scholar
Shannon, R. D. (1993). Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348.CrossRefGoogle Scholar
Singh, J. (1993). Physics of Semiconductors and their Heterostructures. New York: McGraw-Hill.Google Scholar
Somers, P., Stesmans, A., Afanas’ev, A. A., Tian, W. and Edge, L. F. (2010). Comparative spin resonance study on epi-Lu2O3/(111)Si and a-Lu2O3/(100)Si interfaces: Misfit point defects. J. Appl. Phys. 107, 094502.CrossRefGoogle Scholar
Stesmans, A. (1992). New intrinsic defect in as grown thermal SiO2 on (111)Si. Phys. Rev. B 40, 9501.CrossRefGoogle Scholar
Stesmans, A. and Afanas’ev, A. A. (2004). Paramagnetic defects in annealed ultrathin layers of SiO, Al2O3 and ZrO2 on (100)Si. Appl. Phys. Lett. 85, 3792.CrossRefGoogle Scholar
Taur, Y., Wann, C. H. and Frank, D. J. (1998). 25 nm CMOS design considerations. Tech. Digest IEDM, p. 789.CrossRef
Thomas, R., Ehrhart, P., Luysberg, M. et al. (2006). Dysporosium scandate thin films as an alternate amorphous gate oxide prepared by metal-organic chemical vapor deposition. Appl. Phys. Lett. 89, 232902.CrossRefGoogle Scholar
Tomida, K., Kita, K. and Toriumi, A. (2006). Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 89, 142902.CrossRefGoogle Scholar
Toniutti, P., Palestri, P., Esseni, D., Driussi, F., De Michiells, M. and Selmi, L. (2012). On the origin of the mobility reduction in n- and p-metal-oxide-semiconductor field effect transistors with hafnium-based/metal gate stacks. J. Appl. Phys. 112, 034502.CrossRefGoogle Scholar
Wilk, G. D., Wallace, R. M. and Anthony, J. M. (2001). High-k gate dielectrics: current status and material considerations. J. Appl. Phys. 59, 824.Google Scholar
Wong, H. and Iwai, H. (2006). On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microel. Eng. 83, 1867.CrossRefGoogle Scholar
Xie, L., Zhao, Y. and White, M. H. (2004). Interfacial oxide determination and chemical/electrical structures of HfO2/SiO/Si gate dielectrics. Solid-State Electron. 48, 2071.CrossRefGoogle Scholar
Xiong, K., Du, Y., Tse, K. and Robertson, J. (2008). Defect states in the high-dielectric-constant gate oxide HfSiO4. J. Appl. Phys. 101, 024101.CrossRefGoogle Scholar
Xiong, K., Robertson, J., Gibson, M. C. and Clark, S. J. (2005). Defect energy levels in HfO2 high-dielectric-constant gate oxide. Appl. Phys. Lett. 87, 183505.CrossRefGoogle Scholar
Xiong, K., Robertson, J. and Clark, S. J. (2006). Defect energy states in high-k gate oxides. Phys. Stat. Sol. B 243, 2071.CrossRefGoogle Scholar
Yu, P. Y. and Cardona, M. (2010). Fundamentals of Semiconductor Physics. New York: Springer.CrossRefGoogle Scholar
Zhao, X. and Vanderbilt, D. (2002). First-principles study of structural, vibrational and lattice dielectric properties of HfO2. Phys. Rev. B 65, 233106.CrossRefGoogle Scholar
Zhao, X., Ceresoli, D., and Vanderbilt, D. (2005). Structural, electronic and dielectric properties of amorphous ZrO2 from ab initio molecular dynamics. Phys. Rev. B 71, 085107.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×