Book contents
- Frontmatter
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 Preliminary algebra
- 2 Preliminary calculus
- 3 Complex numbers and hyperbolic functions
- 4 Series and limits
- 5 Partial differentiation
- 6 Multiple integrals
- 7 Vector algebra
- 8 Matrices and vector spaces
- 9 Normal modes
- 10 Vector calculus
- 11 Line, surface and volume integrals
- 12 Fourier series
- 13 Integral transforms
- 14 First-order ordinary differential equations
- 15 Higher-order ordinary differential equations
- 16 Series solutions of ordinary differential equations
- 17 Eigenfunction methods for differential equations
- 18 Partial differential equations: general and particular solutions
- 19 Partial differential equations: separation of variables and other methods
- 20 Complex variables
- 21 Tensors
- 22 Calculus of variations
- 23 Integral equations
- 24 Group theory
- 25 Representation theory
- 26 Probability
- 27 Statistics
- 28 Numerical methods
- Appendix Gamma, beta and error functions
- Index
10 - Vector calculus
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface to the second edition
- Preface to the first edition
- 1 Preliminary algebra
- 2 Preliminary calculus
- 3 Complex numbers and hyperbolic functions
- 4 Series and limits
- 5 Partial differentiation
- 6 Multiple integrals
- 7 Vector algebra
- 8 Matrices and vector spaces
- 9 Normal modes
- 10 Vector calculus
- 11 Line, surface and volume integrals
- 12 Fourier series
- 13 Integral transforms
- 14 First-order ordinary differential equations
- 15 Higher-order ordinary differential equations
- 16 Series solutions of ordinary differential equations
- 17 Eigenfunction methods for differential equations
- 18 Partial differential equations: general and particular solutions
- 19 Partial differential equations: separation of variables and other methods
- 20 Complex variables
- 21 Tensors
- 22 Calculus of variations
- 23 Integral equations
- 24 Group theory
- 25 Representation theory
- 26 Probability
- 27 Statistics
- 28 Numerical methods
- Appendix Gamma, beta and error functions
- Index
Summary
In chapter 7 we discussed the algebra of vectors, and in chapter 8 we considered how to transform one vector into another using a linear operator. In this chapter and the next we discuss the calculus of vectors, i.e. the differentiation and integration both of vectors describing particular bodies, such as the velocity of a particle, and of vector fields, in which a vector is defined as a function of the coordinates throughout some volume (one-, two- or three-dimensional). Since the aim of this chapter is to develop methods for handling multi-dimensional physical situations, we will assume throughout that the functions with which we have to deal have sufficiently amenable mathematical properties, in particular that they are continuous and differentiable.
Differentiation of vectors
Let us consider a vector a that is a function of a scalar variable u. By this we mean that with each value of u we associate a vector a(u). For example, in Cartesian coordinates a(u) = ax(u)i + ay(u)j + az(u)k, where ax(u), ay(u) and az(u) are scalar functions of u and are the components of the vector a(u) in the x-, y- and z- directions respectively. We note that if a(u) is continuous at some point u = u0 then this implies that each of the Cartesian components ax(u), ay(u) and az(u) is also continuous there.
- Type
- Chapter
- Information
- Mathematical Methods for Physics and EngineeringA Comprehensive Guide, pp. 340 - 382Publisher: Cambridge University PressPrint publication year: 2002