There are indications that the magnetic field evolution in galaxies might be massively shaped by tidal interactions and mergers between galaxies. The details of the connection between the evolution of magnetic fields and that of their host galaxies is still a field of research.
We use a combined approach of magnetohydrodynamics for the baryons and an N-body scheme for the dark matter to investigate magnetic field amplification and evolution in interacting galaxies.
We find that, for two colliding equal-mass galaxies and for varying initial relative spatial orientations, magnetic fields are amplified during interactions, yet cannot be sustained. Furthermore, we find clues for an active mean-field dynamo.