Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T22:56:29.513Z Has data issue: false hasContentIssue false

Précis of What Babies Know

Published online by Cambridge University Press:  30 May 2023

Elizabeth S. Spelke*
Affiliation:
Department of Psychology, Center for Brains, Minds, and Machines, Harvard University, Cambridge, MA, USA
*
Corresponding author: Elizabeth S. Spelke; Email: spelke@wjh.harvard.edu

Abstract

Where does human knowledge begin? Research on human infants, children, adults, and nonhuman animals, using diverse methods from the cognitive, brain, and computational sciences, provides evidence for six early emerging, domain-specific systems of core knowledge. These automatic, unconscious systems are situated between perceptual systems and systems of explicit concepts and beliefs. They emerge early in infancy, guide children's learning, and function throughout life.

Type
Précis
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnetta, B., & Rochat, P. (2004). Imitative games by 9-, 14-, and 18-month-old infants. Infancy, 6(1), 136.CrossRefGoogle Scholar
Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 110.CrossRefGoogle ScholarPubMed
Amalric, M., & Cantlon, J. F. (2022). Common neural functions from children's learning in naturalistic and controlled mathematics paradigms. Journal of Cognitive Neuroscience, 34(7), 11641182.CrossRefGoogle ScholarPubMed
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 49094917.CrossRefGoogle ScholarPubMed
Baillargeon, R., & Carey, S. (2012). Core cognition and beyond: The acquisition of physical and numerical knowledge. In Pauen, S. M. (Ed.), Early childhood development and later outcome (pp. 3365). Cambridge University Press.Google Scholar
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017). Rational quantitative attribution of beliefs, desires, and percepts in human mentalizing. Nature Human Behavior, 1, 0064.CrossRefGoogle Scholar
Beier, J. S., & Spelke, E. S. (2012). Infants’ developing understanding of social gaze. Child Development, 83(2), 486496.CrossRefGoogle ScholarPubMed
Bergelson, E. (2019). The nascent lexicon: Word learning in infants. Keynote address, Boston University Conference on Language Development, Boston, MA.Google Scholar
Bergelson, E., & Aslin, R. D. (2017). Nature and origins of the lexicon in 6-month-old infants. Proceedings of the National Academy of Sciences of the United States of America, 114(49), 1291612921.CrossRefGoogle Scholar
Bergelson, E., & Swingley, D. (2012). At 6 months, infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 32533258.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2013). The acquisition of abstract words by young infants. Cognition, 127(3), 391397.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2015). Early word comprehension in infants: Replication and extension. Language Learning and Development, 11(4), 369380.CrossRefGoogle ScholarPubMed
Bernard, C., & Gervain, J. (2012). Prosodic cues to word order: What level of representation? Frontiers in Psychology, 3, 451.CrossRefGoogle ScholarPubMed
Black, A., & Bergman, C. (2017). Quantifying infants’ statistical word segmentation: A meta-analysis. Proceedings of the Cognitive Science Society, 124129.Google Scholar
Brune, C. W., & Woodward, A. L. (2007). Social cognition and social responsiveness in 10-month-old infants. Journal of Cognition and Development, 8(2), 133158.CrossRefGoogle Scholar
Bruner, J. (1974). From communication to language: A psychological perspective. Cognition, 3(3), 255287.CrossRefGoogle Scholar
Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 22172229.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893910.CrossRefGoogle ScholarPubMed
Cheng, K. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23(2), 149178.CrossRefGoogle ScholarPubMed
Cheng, K., & Gallistel, C. R. (1984). Testing the geometric power of an animal's spatial representation. In Roitblat, H. L., Terrace, H. S., & Bever, T. G. (Eds.), Animal cognition (pp. 409423). Erlbaum.Google Scholar
Choi, Y., Mou, Y., & Luo, Y. (2018). How do 3-month-old infants attribute preferences to a human agent? Journal of Experimental Child Psychology, 172, 96106.CrossRefGoogle ScholarPubMed
Clifton, R. K., Morrongiello, B. A., & Dowd, J. M. (1984). A developmental look at an auditory illusion: The precedence effect. Developmental Psychobiology, 17(5), 519536.CrossRefGoogle Scholar
Coppola, M., Spaepen, E., & Goldin-Meadow, S. (2013). Communicating about quantity without a language model: Number devices in homesign grammar. Cognitive Psychology, 67(1–2), 125.CrossRefGoogle ScholarPubMed
Cristia, A., Dupoux, E., Gurven, M., & Stieglitz, J. (2019). Child-directed speech is infrequent in a farmer-forager population: A time allocation study. Child Development, 90(3), 759793.CrossRefGoogle Scholar
Deaner, R. O., & Platt, M. L. (2003). Reflexive social attention in monkeys and humans. Current Biology, 13(18), 16091613.CrossRefGoogle ScholarPubMed
de Carvalho, A., He, A., Lidz, J., & Christophe, A. (2019). Prosody and function words cue the acquisition of word meanings in 18-month-old infants. Psychological Science, 30(3), 319332.CrossRefGoogle ScholarPubMed
Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219250.CrossRefGoogle ScholarPubMed
Dehaene, S., Spelke, E. S., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science (New York, N.Y.), 284(5416), 970974.CrossRefGoogle ScholarPubMed
Dewar, K., & Xu, F. (2007). Do 9-month-old infants expect distinct words to refer to kinds? Developmental Psychology, 43(5), 12271238.CrossRefGoogle ScholarPubMed
Dillon, M. R., Kannan, H., Dean, J. T., Spelke, E. S., & Duflo, E. (2017). Cognitive science in the field: A preschool intervention durably enhances intuitive but not formal mathematics. Science (New York, N.Y.), 357(6346), 4755.CrossRefGoogle Scholar
Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning of locations relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 59095914.CrossRefGoogle ScholarPubMed
Doeller, C. F., King, G. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 59155920.CrossRefGoogle ScholarPubMed
Driver, J., Davis, G., Ricciardelli, P., Kidd, P., Maxwell, E., & Baron-Cohen, S. (1999). Gaze perception triggers reflexive visuospatial orienting. Visual Cognition, 6(5), 509540.CrossRefGoogle Scholar
Farooq, U., & Dragoi, G. (2019). Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science (New York, N.Y.), 363(6423), 168173.CrossRefGoogle ScholarPubMed
Farroni, T., Csibra, G., Simion, F., & Johnson, M. H. (2002). Eye contact detection in humans from birth. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 96029605.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Paukner, A., Ionica, C., & Suomi, S. J. (2009). Reciprocal face-to-face communication between rhesus macaque mothers and their newborn infants. Current Biology, 19(20), 17681772.CrossRefGoogle ScholarPubMed
Field, T. M., Woodson, R., Greenberg, R., & Cohen, D. (1982). Discrimination and imitation of facial expression by neonates. Science, 218(4568), 179181.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983). The modularity of mind. MIT Press.CrossRefGoogle Scholar
Foster, D. J. (2017). Replay comes of age. Annual Review of Neuroscience, 40, 581602.CrossRefGoogle ScholarPubMed
Friederici, A. D., Friedrich, M., & Christophe, A. (2007). Brain responses in 4-month-old infants already are language-specific. Current Biology, 17(14), 12081211.CrossRefGoogle ScholarPubMed
Friederici, A. D., Mueller, J. L., & Oberecker, R. (2011). Precursors to natural grammar learning: Preliminary evidence from 4-month-old infants. PLoS ONE, 6(3), e17920.CrossRefGoogle ScholarPubMed
Ge, X., Zhang, K., Grizibis, A., Hamodi, A. S., Martinez Sabino, A., & Crair, M.C. (2021). Retinal waves prime visual motion detection by simulating future optic flow. Science (New York, N.Y.), 373(6553), 412.CrossRefGoogle ScholarPubMed
Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56(2), 165193.CrossRefGoogle ScholarPubMed
Gervain, J., Nespor, N., Mazuka, R., Horie, R., & Mehler, J. (2008). Bootstrapping word order in prelexical infants: A Japanese–Italian cross-linguistic study. Cognitive Psychology, 57(1), 5674.CrossRefGoogle ScholarPubMed
Gervain, J., & Werker, J. F. (2013). Prosody cues word order in 7-month-old bilingual infants. Nature Communications, 4(1), 16.CrossRefGoogle ScholarPubMed
Gibson, E. J. (1969). Principles of perceptual learning and development. Appleton Century Crofts.Google Scholar
Gibson, E. J. (1980). Autobiography. In Lindzey, G. (Ed.), A history of psychology in autobiography (Vol. 7, pp. 239271).Google Scholar
Gibson, E. J. (1982). The concept of affordances in development: The renascence of functionalism. In Collins, W. A. (Ed.), The concept of development. Minnesota symposium on child psychology (Vol. 15). Erlbaum. Reprinted, with new comments, in Gibson, E. J. (1991). An odyssey in learning and perception. MIT Press.Google Scholar
Gibson, E. J. (1991). An odyssey in learning and perception. MIT Press.Google Scholar
Gibson, E. J., & Bergman, R. (1954/1991). The effect of training on absolute estimation of distance over the ground. Journal of Experimental Psychology, 48(6), 473482. Reprinted, with a new introduction, in Gibson, E. J. (1991). An odyssey in learning and perception (pp. 205–220). MIT Press.CrossRefGoogle ScholarPubMed
Gibson, E. J., Owsley, C. J., & Johnston, J. (1978/1991). Perception of invariants by 5-month-old infants: Differentiation of two types of motion. Developmental Psychology, 14, 407415. Reprinted with a new introduction in Gibson, E. J. (1991). An odyssey in learning and perception (pp. 527–540). MIT Press.CrossRefGoogle Scholar
Gibson, E. J., & Walk, R. D. (1960). The “visual cliff”. Scientific American, 202(4), 6271.CrossRefGoogle Scholar
Gibson, E. J., & Walker, A. S. (1984/1991). Development of knowledge of visual-tactual affordances of substances. Child Development, 55, 453460. Reprinted with a new introduction in Gibson, E. J. (1991). An odyssey in learning and perception (pp. 541–555). MIT Press.CrossRefGoogle Scholar
Gordon, P. (2003). The origin of argument structure in infant event representations. In Proceedings of the Annual Boston University Conference on Language Development (Vol. 1, pp. 189198). Cascadilla Press.Google Scholar
Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind perception. Science (New York, N.Y.), 315(5812), 619.CrossRefGoogle ScholarPubMed
Gredebäck, G., Johnson, S. P., & von Hofsten, C. (2010). Eye tracking in infancy research. Developmental Neuropsychology, 35, 119.CrossRefGoogle ScholarPubMed
Halberda, J., Ly, R., Wilmer, J. B., Naiman, J. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 1111611120.CrossRefGoogle ScholarPubMed
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in nonverbal number acuity correlate with maths achievement. Nature, 455(7213), 665668.CrossRefGoogle ScholarPubMed
Hamlin, J. K., Wynn, K., & Bloom, P. (2007). Social evaluation by preverbal infants. Nature, 450(7169), 557559.CrossRefGoogle ScholarPubMed
Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition, 77(2018), 263277.CrossRefGoogle Scholar
Held, R., Birch, E. E., & Gwiazda, J. (1980). Stereoacuity of human infants. Proceedings of the National Academy of Sciences of the United States of America, 77(9), 55725574.CrossRefGoogle ScholarPubMed
Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 5759.CrossRefGoogle ScholarPubMed
Hermer, L., & Spelke, E. S. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61(3), 195232.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to language. Nature, 430(6998), 453456.CrossRefGoogle ScholarPubMed
Hohle, B., Wiessenborn, J., Kiefer, D., Schulz, A., & Schmitz, M. (2004). Functional elements in infants’ speech processing: The role of determiners in the syntactic categorization of lexical elements. Infancy, 5(3), 341353.CrossRefGoogle Scholar
Hood, B. M., Willen, J. D., & Driver, J. (1998). Adults’ eyes trigger shifts in visual attention in human infants. Psychological Science, 9(2), 131134.CrossRefGoogle Scholar
Huttenlocher, J., & Lourenco, S. F. (2007). Coding location in enclosed spaces: Is geometry the principle? Developmental Science, 10(6), 741746.CrossRefGoogle ScholarPubMed
Hyde, D. C., Boas, D. A., Blair, C., & Carey, S. (2010). Near infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647652.CrossRefGoogle ScholarPubMed
Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 141(1), 92107.CrossRefGoogle Scholar
Hyde, D. C., & Spelke, E. S. (2009). All numbers are not equal: An electrophysiological investigation of small and large number representations. Journal of Cognitive Neuroscience, 21(6), 10391053.CrossRefGoogle Scholar
Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360371.CrossRefGoogle ScholarPubMed
Hyde, D. C., & Wood, J. N. (2011). Spatial attention determines the nature of nonverbal number representation. Journal of Cognitive Neuroscience, 23(9), 23362351.CrossRefGoogle ScholarPubMed
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 1038210385.CrossRefGoogle ScholarPubMed
Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The naive utility calculus: Computational principles underlying commonsense psychology. Trends in Cognitive Sciences, 20(8), 509604.CrossRefGoogle ScholarPubMed
Javadi, A.-H., Emo, B., Howard, L. R., Zisch, F. E., Yu, Y., Knight, R., ... Spiers, H. J. (2017). Hippocampal and prefrontal processing of network topology to simulate the future. Nature Communications, 8(1), 14652.CrossRefGoogle ScholarPubMed
Johnson, J. S., & Newport, E. L. (1989). Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cognitive Psychology, 21(1), 6099.CrossRefGoogle ScholarPubMed
Julian, J. B., Keinath, A. T., Muzzio, I. A., & Epstein, R. A. (2015). Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 65036508.CrossRefGoogle ScholarPubMed
Jusczyk, P. W. (1997). The discovery of spoken language. MIT Press.Google Scholar
Katz, L. C., & Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits. Science (New York, N.Y.), 274(5290), 11331138.CrossRefGoogle ScholarPubMed
Kellman, P. J., Gleitman, H., & Spelke, E. S. (1987). Object and observer motion in the perception of objects by infants. Journal of Experimental Psychology: Human Perception and Performance, 13(4), 586593.Google ScholarPubMed
Kellman, P. J., & Spelke, E. S. (1983). Perception of partly occluded objects in infancy. Cognitive Psychology, 15(4), 483524.CrossRefGoogle ScholarPubMed
Khanum, S., Hanif, S., Spelke, E. S., Berteletti, I., & Hyde, D. C. (2016). Effects of non-symbolic approximate number practice on symbolic numerical abilities in Pakistani children. PLoS ONE, 112(10), e0164436.CrossRefGoogle Scholar
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences of the United States of America, 104(30), 1257712580.CrossRefGoogle ScholarPubMed
Knobe, J., & Prinz, J. J. (2008). Intuitions about consciousness: Experimental studies. Phenomenology and the Cognitive Sciences, 7(1), 6783.CrossRefGoogle Scholar
Kosakowski, H. L., Powell, L. J., & Spelke, E. S. (2016). Preverbal infants’ third party imitator preferences: Animated displays versus filmed actors. Talk presented at the International Congress on Infant Studies, New Orleans, LA.Google Scholar
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 90969101.CrossRefGoogle ScholarPubMed
Landau, B. (2017). Update on “what” and “where” in spatial language: A new division of labor for spatial terms. Cognitive Science, 41(2), 321350.CrossRefGoogle Scholar
Landau, B., Gleitman, H., & Spelke, E. (1981). Spatial knowledge and geometric representation in a child blind from birth. Science (New York, N.Y.), 213(4513), 12751278.CrossRefGoogle Scholar
Landau, B., Spelke, E., & Gleitman, H. (1984). Spatial knowledge in a young blind child. Cognition, 16(3), 225260.CrossRefGoogle Scholar
Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: Young children's use of length, angle, distance and direction in a reorientation task. Cognition, 123(1), 144161.CrossRefGoogle Scholar
Lee, S. A., Winkler-Rhoades, N., & Spelke, E. S. (2012). Spontaneous reorientation is guided by perceived surface distance. PLoS ONE, 7(12), e51373.CrossRefGoogle ScholarPubMed
Liszkowski, U., Carpenter, M., Henning, A., Striano, T., & Tomasello, M. (2004). Twelve-month-olds point to share attention and interest. Developmental Science, 7(3), 297307.CrossRefGoogle ScholarPubMed
Liu, S., Brooks, N., & Spelke, E. S. (2019). Origins of the concepts cause, cost, and goal in 3-month-old infants. Proceedings of the National Academy of Sciences of the United States of America, 116(36), 1774717752.CrossRefGoogle Scholar
Liu, S., Ullman, T. D., Tenenbaum, J. T., & Spelke, E. S. (2017). Ten-month-old infants infer the value of goals from the costs of actions. Science (New York, N.Y.), 358(6366), 10381041.CrossRefGoogle ScholarPubMed
Liu, Y., Dolan, R. J., Kurth-Nelson, Z., & Behrens, T. E. J. (2019). Human replay spontaneously reorganizes experience. Cell, 178(3), 640652.CrossRefGoogle ScholarPubMed
Luo, Y., & Johnson, S. C. (2009). Recognizing the role of perception in action at six months. Developmental Science, 12(1), 142149.CrossRefGoogle Scholar
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776781.CrossRefGoogle ScholarPubMed
Mehler, J., Juszyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143178.CrossRefGoogle ScholarPubMed
Mehr, S. A., & Spelke, E. S. (2017). Shared musical knowledge in 11-month-old infants. Developmental Science, 21(2), e12542.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science (New York, N.Y.), 198(4312), 7578.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1994/2002). Imitation, memory, and the representation of persons. Infant Behavior and Development, 25(1), 3961.CrossRefGoogle Scholar
Meltzoff, A. N., Murray, L., Simpson, E., Heimann, M., Nagy, E., Nadel, J., ... Ferrari, P. F. (2018). Re-examination of Oostenbroeck et al. (2016): Evidence for neonatal imitation of tongue protrusion. Developmental Science, 21(4), e12609.CrossRefGoogle ScholarPubMed
Mendelson, M. J., Haith, M. M., & Goldman-Rakic, P. S. (1982). Face scanning and responsiveness to social cues in infant rhesus monkeys. Developmental Psychology, 18(2), 222228.CrossRefGoogle Scholar
Michotte, A., Thines, G., & Crabbé, G. (1964). Les complements amodaux des structures perceptives. Universitaires de Louvain.Google Scholar
Myowa, M. (1996). Imitation of facial gestures by an infant chimpanzee. Primates, 37(2), 207213.CrossRefGoogle Scholar
Naccache, L., Blandin, F., & Dehaene, S. (2002). Unconscious mass priming depends on temporal attention. Psychological Science, 13(5), 416424.CrossRefGoogle Scholar
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185208.CrossRefGoogle ScholarPubMed
O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425428.CrossRefGoogle ScholarPubMed
Oostenbroeck, J., Suddendorf, T., Nielsen, M., Redshaw, J., Kennedy-Costantini, S., Davis, J., ... Slaughter, V. (2016). Comprehensive longitudinal study challenges the existence of neonatal imitation in humans. Current Biology, 26(10), 2334–1338.Google Scholar
Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278293.CrossRefGoogle ScholarPubMed
Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science (New York, N.Y.), 296(5571), 13211323.CrossRefGoogle ScholarPubMed
Paukner, A., Ferrari, P. F., & Suomi, S. J. (2011). Delayed imitation of lipsmacking gestures by infant rhesus macaques. PLoS ONE, 6(12), e28848.CrossRefGoogle ScholarPubMed
Paukner, A., Suomi, S. J., Visalberghi, F., & Ferrari, P. F. (2009). Capuchin monkeys display affiliation toward humans who imitate them. Science (New York, N.Y.), 325(5942), 880883.CrossRefGoogle Scholar
Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2012). Bootstrapping in a language of thought: A formal model of numerical concept learning. Cognition, 123, 199217.CrossRefGoogle Scholar
Piazza, M., Pica, P., Izard, V., Spelke, E., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6), 10371043.CrossRefGoogle ScholarPubMed
Powell, L. J., & Spelke, E. S. (2017). Human infants’ understanding of social imitation: Inferences of affiliation from third-party observations. Cognition, 170, 3148.CrossRefGoogle ScholarPubMed
Powell, L. J., & Spelke, E. S. (2018). Third party preferences for imitators in preverbal infants. Open Mind, 2(2), 6171.CrossRefGoogle Scholar
Regolin, L., & Vallortigara, G. (1995). Perception of partly occluded objects by young chicks. Perception and Psychophysics, 57(7), 971976.CrossRefGoogle ScholarPubMed
Saffran, J., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science (New York, N.Y.), 274(5294), 10961098.CrossRefGoogle ScholarPubMed
Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1–2), 146.CrossRefGoogle ScholarPubMed
Shi, R., Werker, J. F., & Morgan, J. L. (1999). Newborn infants’ sensitivity to perceptual cues to lexical and grammatical words. Cognition, 72(2), B11B21.CrossRefGoogle ScholarPubMed
Shuck, N. W., & Niv, Y. (2019). Sequential replay of nonspatial task states in the human hippocampus. Science (New York, N.Y.), 364(6447), eeaw5181.CrossRefGoogle Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 809813.CrossRefGoogle ScholarPubMed
Skerry, A., Carey, S., & Spelke, E. S. (2013). First-person action experience reveals sensitivity to action efficiency in pre-reaching infants. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 1872818733.CrossRefGoogle Scholar
Smith, K. A., Mei, L., Yao, S., Wu, J., Spelke, E., Tenenbaum, J. B., & Ullman, T. D. (2021). Modeling expectation violation in intuitive physics with coarse probabilistic object representations. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, CA.Google Scholar
Smith-Flores, A. S., Perez, J., Zhang, M. H., & Feigenson, L. (2022). Online measures of looking and learning in infancy. Infancy, 27(1), 424.CrossRefGoogle ScholarPubMed
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1B11.CrossRefGoogle ScholarPubMed
Spelke, E. S. (1988). Where perceiving ends and thinking begins: The apprehension of objects in infancy. In Yonas, A. (Ed.), Perceptual development in infancy: The Minnesota symposium on child psychology (Vol. 20). Erlbaum.Google Scholar
Spelke, E. S. (2022). What babies know: Core knowledge and composition. Oxford University Press.CrossRefGoogle Scholar
Spelke, E. S., Kestenbaum, R., Simons, D. S., & Wein, D. (1995). Spatio-temporal continuity, smoothness of motion, and object identity in infancy. British Journal of Developmental Psychology, 13(2), 113142.CrossRefGoogle Scholar
Spokes, A. C., & Spelke, E. S. (2017). The cradle of social knowledge: Infants’ reasoning about caregiving and affiliation. Cognition, 159, 102116.CrossRefGoogle ScholarPubMed
Stern, D. N. (1985). The interpersonal world of the infant: A view from psychoanalysis and developmental psychology. Basic Books.Google Scholar
Strickland, B. (2017). Language reflects “core” cognition: A new theory about the origin of cross-linguistic regularities. Cognitive Science, 41(1), 70101.CrossRefGoogle ScholarPubMed
Teller, D. Y. (1979). The forced-choice preferential looking procedure: A psychophysical technique for use with human infants. Infant Behavior and Development, 2, 135153.CrossRefGoogle Scholar
Thomas, A. J., Saxe, R., & Spelke, E. S. (2022). Infants infer potential social partners by observing the interactions of their parents with unknown others. Proceedings of the National Academy of Sciences of the United States of America, 119(32), e2121390119.CrossRefGoogle ScholarPubMed
Thomas, A. J., Woo, B., Nettle, D., Spelke, E. S., & Saxe, R. (2022). Early concepts of intimacy: Young humans use saliva sharing to infer close relationships. Science (New York, N.Y.), 375(6578), 311315.CrossRefGoogle ScholarPubMed
Thrun, S. (2002). Robotic mapping: A survey. In Lakemeyer, G. & Nebel, B. (Eds.), Exploring artificial intelligence in the new millennium (pp. 135). Morgan Kaufman.Google Scholar
Tincoff, R., & Jusczyk, P. W. (1999). Some beginnings of word comprehension in 6-month-olds. Psychological Science, 10(2), 172175.CrossRefGoogle Scholar
Tincoff, R., & Jusczyk, P. W. (2012). Six-month-olds comprehend words to refer to parts of the body. Infancy, 17(4), 432444.CrossRefGoogle ScholarPubMed
Tomasello, M. (2008). Origins of human communication. MIT Press.CrossRefGoogle Scholar
Tomasello, M. (2018). How children come to understand false beliefs. Proceedings of the National Academy of Sciences of the United States of America, 115(34), 84918498.CrossRefGoogle ScholarPubMed
Turing, A. M. (1950). Computing machinery and intelligence. Mind; A Quarterly Review of Psychology and Philosophy, 59(236), 433460.CrossRefGoogle Scholar
Ullman, T. D. (2015). On the nature and origin of intuitive theories: Learning physics and psychology. Doctoral dissertation, Department of Brain and Cognitive Sciences, MIT.Google Scholar
Ullman, T. D., Spelke, E. S., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: Game engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 21(9), 649665.CrossRefGoogle ScholarPubMed
Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian Models of conceptual development: Learning as building models of the world. Annual Review of Developmental Psychology, 2(1), 533558.CrossRefGoogle Scholar
Valenza, E., Leo, I., Gava, L., & Simion, R. (2006). Perceptual completion in newborn human infants. Child Development, 77(6), 18101821.CrossRefGoogle ScholarPubMed
Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3(7), e208.CrossRefGoogle ScholarPubMed
von Hofsten, C. (1982). Eye-hand coordination in the newborn. Developmental Psychology, 18(3), 450.CrossRefGoogle Scholar
Walco, E. (2022). Surprise-induced exploration as a tool for learning: A comparative approach with human infants and non-human primates. Doctoral dissertation, Department of Human Evolutionary Biology, Harvard University.Google Scholar
Walk, R. D., & Gibson, E. J. (1961/1991). A comparative and analytical study of visual depth perception. Psychological Monographs, 75, 44.CrossRefGoogle Scholar
Walk, R. D., Gibson, E. J., & Tighe, T. J. (1957/1991). The behavior of light- and dark-reared rats on a visual cliff. Science (New York, N.Y.), 126(3263), 8081. Reprinted with a new introduction in Gibson, E. J. (1991). An odyssey in learning and perception (pp. 141–146).CrossRefGoogle ScholarPubMed
Waxman, S. R., & Braun, I. (2005). Consistent but not variable names as invitations to form object categories: New evidence from 12-month-old infants. Cognition, 95(3), 257302.CrossRefGoogle Scholar
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology, 29(3), 257302.CrossRefGoogle ScholarPubMed
Weisman, K., Dweck, C. S., & Markman, E. M. (2017). Rethinking people's conceptions of mental life. Proceedings of the National Academy of Sciences of the United States of America, 114(43), 1137411379.CrossRefGoogle ScholarPubMed
Werker, J. F. (1989). Becoming a native listener. American Scientist, 77(1), 5459.Google Scholar
Woo, B. M., Liu, S., & Spelke, E. S. (2021). Open-minded, not naïve: 3-month-old infants encode objects as the goals of other people's reaches. Proceedings of the 43rd Annual Meeting of the Cognitive Science Society, 43, 19141920.Google Scholar
Woodward, A. L. (1998). Infants selectively encode the goal object of an actor's reach. Cognition, 69(1), 134.CrossRefGoogle ScholarPubMed
Xu, F. (2002). The role of language in acquiring object kind concepts in infancy. Cognition, 85(3), 223250.CrossRefGoogle ScholarPubMed
Xu, F., & Arriaga, R. I. (2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25(1), 103108.CrossRefGoogle Scholar
Xu, F., & Carey, S. (1996). Infants’ metaphysics: The case of numerical identity. Cognitive Psychology, 30(2), 111153.CrossRefGoogle ScholarPubMed
Xu, F., & Garcia, V. (2008). Intuitive statistics by 8-month-old infants. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 50125015.CrossRefGoogle ScholarPubMed
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1B11.CrossRefGoogle ScholarPubMed