We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Singularly perturbed ordinary differential equations often exhibit Stokes’ phenomenon, which describes the appearance and disappearance of oscillating exponentially small terms across curves in the complex plane known as Stokes lines. These curves originate at singular points in the leading-order solution to the differential equation. In many important problems, it is impossible to obtain a closed-form expression for these leading-order solutions, and it is therefore challenging to locate these singular points. We present evidence that the analytic leading-order solution of a linear differential equation can be replaced with a numerical rational approximation using the adaptive Antoulas–Anderson (AAA) method. Despite such an approximation having completely different singularity types and locations, we show that the subsequent exponential asymptotic analysis accurately predicts the exponentially small behaviour present in the solution. For sufficiently small values of the asymptotic parameter, this approach breaks down; however, the range of validity may be extended by increasing the number of poles in the rational approximation. We present a related nonlinear problem and discuss the challenges that arise due to nonlinear effects. Overall, our approach allows for the study of exponentially small asymptotic effects without requiring an exact analytic form for the leading-order solution; this permits exponential asymptotic methods to be used in a much wider range of applications.
In analogy to classical spherical t-design points, we introduce the concept of t-design curves on the sphere. This means that the line integral along a t-design curve integrates polynomials of degree t exactly. For low degrees, we construct explicit examples. We also derive lower asymptotic bounds on the lengths of t-design curves. Our main results prove the existence of asymptotically optimal t-design curves in the Euclidean $2$-sphere and the existence of t-design curves in the d-sphere.
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
We investigate the convexity of the radial sum of two convex bodies containing the origin. Generally, the radial sum of two convex bodies containing the origin is not convex. We show that the radial sum of a star body (with respect to the origin) and any large centered ball is convex, which produces a pair of convex bodies containing the origin whose radial sum is convex.
We also investigate the convexity of the intersection body of a convex body containing the origin. Generally, the intersection body of a convex body containing the origin is not convex. Busemann’s theorem states that the intersection body of any centered convex body is convex. We are interested in how to construct convex intersection bodies from convex bodies without any symmetry (especially, central symmetry). We show that the intersection body of the radial sum of a star body (with respect to the origin) and any large centered ball is convex, which produces a convex body with no symmetries whose intersection body is convex.
Let X be a compact metric space, C(X) be the space of continuous real-valued functions on X and $A_{1},A_{2}$ be two closed subalgebras of C(X) containing constant functions. We consider the problem of approximation of a function $f\in C(X)$ by elements from $A_{1}+A_{2}$. We prove a Chebyshev-type alternation theorem for a function $u_{0} \in A_{1}+A_{2}$ to be a best approximation to f.
We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential $V$, (ii) Fisher–Hartwig singularities and (iii) a smooth function in the background. The potential $V$ is associated with an equilibrium measure that is assumed to be supported on the whole unit circle. For constant potentials $V$, the equilibrium measure is the uniform measure on the unit circle and our formulas reduce to well-known results for Toeplitz determinants with Fisher–Hartwig singularities. For non-constant $V$, our results appear to be new even in the case of no Fisher–Hartwig singularities. As applications of our results, we derive various statistical properties of a determinantal point process which generalizes the circular unitary ensemble.
Aromatic B-series were introduced as an extension of standard Butcher-series for the study of volume-preserving integrators. It was proven with their help that the only volume-preserving B-series method is the exact flow of the differential equation. The question was raised whether there exists a volume-preserving integrator that can be expanded as an aromatic B-series. In this work, we introduce a new algebraic tool, called the aromatic bicomplex, similar to the variational bicomplex in variational calculus. We prove the exactness of this bicomplex and use it to describe explicitly the key object in the study of volume-preserving integrators: the aromatic forms of vanishing divergence. The analysis provides us with a handful of new tools to study aromatic B-series, gives insights on the process of integration by parts of trees, and allows to describe explicitly the aromatic B-series of a volume-preserving integrator. In particular, we conclude that an aromatic Runge–Kutta method cannot preserve volume.
The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study.
Let $\mathcal {F}$ be a hereditary collection of finite subsets of $\mathbb {N}$. In this paper, we introduce and characterize $\mathcal {F}$-(almost) greedy bases. Given such a family $\mathcal {F}$, a basis $(e_n)_n$ for a Banach space X is called $\mathcal {F}$-greedy if there is a constant $C\geqslant 1$ such that for each $x\in X$, $m \in \mathbb {N}$, and $G_m(x)$, we have
$$ \begin{align*} \|x - G_m(x)\|\ \leqslant\ C \inf\left\{\left\|x-\sum_{n\in A}a_ne_n\right\|\,:\, |A|\leqslant m, A\in \mathcal{F}, (a_n)\subset \mathbb{K}\right\}. \end{align*} $$
Here, $G_m(x)$ is a greedy sum of x of order m, and $\mathbb {K}$ is the scalar field. From the definition, any $\mathcal {F}$-greedy basis is quasi-greedy, and so the notion of being $\mathcal {F}$-greedy lies between being greedy and being quasi-greedy. We characterize $\mathcal {F}$-greedy bases as being $\mathcal {F}$-unconditional, $\mathcal {F}$-disjoint democratic, and quasi-greedy, thus generalizing the well-known characterization of greedy bases by Konyagin and Temlyakov. We also prove a similar characterization for $\mathcal {F}$-almost greedy bases.
Furthermore, we provide several examples of bases that are nontrivially $\mathcal {F}$-greedy. For a countable ordinal $\alpha $, we consider the case $\mathcal {F}=\mathcal {S}_{\alpha }$, where $\mathcal {S}_{\alpha }$ is the Schreier family of order $\alpha $. We show that for each $\alpha $, there is a basis that is $\mathcal {S}_{\alpha }$-greedy but is not $\mathcal {S}_{\alpha +1}$-greedy. In other words, we prove that none of the following implications can be reversed: for two countable ordinals $\alpha < \beta $,
We use new methods, specific for non-locally convex quasi-Banach spaces, to investigate when the quasi-greedy bases of a $p$-Banach space for $0< p<1$ are democratic. The novel techniques we obtain permit to show in particular that all quasi-greedy bases of the Hardy space $H_p({\mathbb {D}})$ for $0< p<1$ are democratic while, in contrast, no quasi-greedy basis of $H_p({\mathbb {D}}^d)$ for $d\ge 2$ is, solving thus a problem that was raised in [7]. Applications of our results to other spaces of interest both in functional analysis and approximation theory are also provided.
Low-rank tensor representations can provide highly compressed approximations of functions. These concepts, which essentially amount to generalizations of classical techniques of separation of variables, have proved to be particularly fruitful for functions of many variables. We focus here on problems where the target function is given only implicitly as the solution of a partial differential equation. A first natural question is under which conditions we should expect such solutions to be efficiently approximated in low-rank form. Due to the highly nonlinear nature of the resulting low-rank approximations, a crucial second question is at what expense such approximations can be computed in practice. This article surveys basic construction principles of numerical methods based on low-rank representations as well as the analysis of their convergence and computational complexity.
For a given Beurling–Carleson subset E of the unit circle $\mathbb {T}$ which has positive Lebesgue measure, we give explicit formulas for measurable functions supported on E such that their Cauchy transforms have smooth extensions from $\mathbb {D}$ to $\mathbb {T}$. The existence of such functions has been previously established by Khrushchev in 1978, in non-constructive ways by the use of duality arguments. We construct several families of such smooth Cauchy transforms and apply them in a few related problems in analysis: an irreducibility problem for the shift operator, an inner factor permanence problem. Our development leads to a self-contained duality proof of the density of smooth functions in a very large class of de Branges–Rovnyak spaces. This extends the previously known approximation results.
The purpose of this paper is to quantify the size of the Lebesgue constants
$(\boldsymbol {L}_m)_{m=1}^{\infty }$
associated with the thresholding greedy algorithm in terms of a new generation of parameters that modulate accurately some features of a general basis. This fine tuning of constants allows us to provide an answer to the question raised by Temlyakov in 2011 to find a natural sequence of greedy-type parameters for arbitrary bases in Banach (or quasi-Banach) spaces which combined linearly with the sequence of unconditionality parameters
$(\boldsymbol {k}_m)_{m=1}^{\infty }$
determines the growth of
$(\boldsymbol {L}_m)_{m=1}^{\infty }$
. Multiple theoretical applications and computational examples complement our study.
Narrow escape and narrow capture problems which describe the average times required to stop the motion of a randomly travelling particle within a domain have applications in various areas of science. While for general domains, it is known how the escape time decreases with the increase of the trap sizes, for some specific 2D and 3D domains, higher-order asymptotic formulas have been established, providing the dependence of the escape time on the sizes and locations of the traps. Such results allow the use of global optimisation to seek trap arrangements that minimise average escape times. In a recent paper (Iyaniwura (2021) SIAM Rev.63(3), 525–555), an explicit size- and trap location-dependent expansion of the average mean first passage time (MFPT) in a 2D elliptic domain was derived. The goal of this work is to systematically seek global minima of MFPT for $1\leq N\leq 50$ traps in elliptic domains using global optimisation techniques and compare the corresponding putative optimal trap arrangements for different values of the domain eccentricity. Further, an asymptotic formula for the average MFPT in elliptic domains with N circular traps of arbitrary sizes is derived, and sample optimal configurations involving non-equal traps are computed.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
Given a sequence $\varrho =(r_n)_n\in [0,1)$ tending to $1$, we consider the set ${\mathcal {U}}_A({\mathbb {D}},\varrho )$ of Abel universal functions consisting of holomorphic functions f in the open unit disk $\mathbb {D}$ such that for any compact set K included in the unit circle ${\mathbb {T}}$, different from ${\mathbb {T}}$, the set $\{z\mapsto f(r_n \cdot )\vert _K:n\in \mathbb {N}\}$ is dense in the space ${\mathcal {C}}(K)$ of continuous functions on K. It is known that the set ${\mathcal {U}}_A({\mathbb {D}},\varrho )$ is residual in $H(\mathbb {D})$. We prove that it does not coincide with any other classical sets of universal holomorphic functions. In particular, it is not even comparable in terms of inclusion to the set of holomorphic functions whose Taylor polynomials at $0$ are dense in ${\mathcal {C}}(K)$ for any compact set $K\subset {\mathbb {T}}$ different from ${\mathbb {T}}$. Moreover, we prove that the class of Abel universal functions is not invariant under the action of the differentiation operator. Finally, an Abel universal function can be viewed as a universal vector of the sequence of dilation operators $T_n:f\mapsto f(r_n \cdot )$ acting on $H(\mathbb {D})$. Thus, we study the dynamical properties of $(T_n)_n$ such as the multiuniversality and the (common) frequent universality. All the proofs are constructive.
Based on the work of Mauldin and Williams [‘On the Hausdorff dimension of some graphs’, Trans. Amer. Math. Soc.298(2) (1986), 793–803] on convex Lipschitz functions, we prove that fractal interpolation functions belong to the space of convex Lipschitz functions under certain conditions. Using this, we obtain some dimension results for fractal functions. We also give some bounds on the fractal dimension of fractal functions with the help of oscillation spaces.
Let $\mathcal {N}$ be a non-Archimedean-ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In this paper, we first review the properties of weakly locally uniformly differentiable (WLUD) functions, $k$ times weakly locally uniformly differentiable (WLUD$^{k}$) functions and WLUD$^{\infty }$ functions at a point or on an open subset of $\mathcal {N}$. Then, we show under what conditions a WLUD$^{\infty }$ function at a point $x_0\in \mathcal {N}$ is analytic in an interval around $x_0$, that is, it has a convergent Taylor series at any point in that interval. We generalize the concepts of WLUD$^{k}$ and WLUD$^{\infty }$ to functions from $\mathcal {N}^{n}$ to $\mathcal {N}$, for any $n\in \mathbb {N}$. Then, we formulate conditions under which a WLUD$^{\infty }$ function at a point $\boldsymbol {x_0} \in \mathcal {N}^{n}$ is analytic at that point.